Conditions for Robust Majorana Bound States in Superlattice Majorana Nanowires

¹<u>Samuel D. Escribano</u>, ²Alfredo Levy Yeyati and ¹Elsa Prada ¹Departamento de Física de la Materia Condensada and ²Departamento de Física Teórica de la Materia Condensada, IFIMAC and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

ABSTRACT: Spectroscopic measurements in recent Majorana Nanowire experiments [1] exhibit Zero Bias Peaks compatible with the existence of Majorana Bound States (MBS). However, a **proof of the non-locality** of its wavefunction is still lacking. In this work we study a recently proposed configuration [2] in which the semiconductor nanowire is placed over a superlattice array of superconductor (SC) fingers, allowing a STM tip to measure the local dl/dV on top of the wire, revealing the non-local nature of the MBS. Here, we focus on the **impact of the inhomogeneous electrostatic potential** created by this superlattice on the Nanowire spectral properties. For that purpose, we use a 3D finite model for the Nanowire and we compute the electrostatic profile solving self-consistently the **Poisson equation**. We analyze which are the optimal superlattice parameters for **obtaining robust MBS**.

1. Model		
Model InSb nanowire L. Al finger	We use the effective Hamiltonian for a 3D Majorana nanowire	

$$H = \left[\left(\frac{\hbar^2 k^2}{2m^*} + E_{int} - \phi(x, y, z) \right) \sigma_0 + \right]$$

 $+\alpha_R(k_x\sigma_y - k_y\sigma_x) + V_Z\sigma_x]\tau_Z + \Delta(x, y, z)\sigma_y\tau_y$

Where $\Delta(x,y,z)$ is given by a step-function ($\Delta(x)=\Delta_0$) when x is over a SC finger and 0 otherwise) and $\varphi(x,y,z)$ is obtained by solving the **Poisson** equation in the whole space.

· 15 14 13 12 11 10 400 - $L_{cell}(nm)$ 300 lever 200 --00010100 -20 +

3. Impact of the superlattice on the Spectral Properties

Phase Diagram for a 1D nanowire

• Large lever arms also mean large potential oscillations. That could create QDs along the wire instead of extended quasiparticles.

- $V_Z(meV)$ •The induced superconductivity is
- always smaller, leading to less topological protection.

 $V_Z(meV)$

1200

1200

0.4

900

900

• Longitudinal sub-bands emerge due to the superlattice periodicity (even-odd effect). • Trivial holes emerge when $\lambda_{MBS} = L_{cell}$.

4. Optimal Superlattice Parameters

Optimal Superlattice Parameters

• gating the wire is difficult.

Results for a 3D nanowire with Poisson

- trivial holes are created.
- longitudinal sub-bands are close one to each other.

and **r**_{AI}=0.5 shows MBSs (red). However, there is a topologically trivial hole. • There are zero energy pinned regions.

periodicity of the superlattice.

•The dl/dV (bottom) shows the MBSs at zero energy, with a different periodicity.

600

600

5. Summary and Conclusions

- The inhomogeneous superconductivity lessens the topological protection.
- Depending on the superlattice parameters, the robustness of the topological phase may be weaker. That occurs when L_{cell} is either, as small that different longitudinal bands are close one to each other (compared to the other energy scales), or when L_{cell} is comparable to λ_{MBS} .
- •Attending to these aspects and the capability for gating, some superlattice constants are not desirable for obtaining robust MBS.
- •For the desirable superlattice constants values, we obtain topologically protected MBSs with a wavelength given by λ_{MBS} , while the charge density of the wire oscillates with the periodicity of

the superlattice.

Parameters.- m*=0.015m_e, E_{int}=-10meV, α_{R} =60meV·nm, Δ_{0} =0.3meV, L_x=1.2µm, $W_{v} = W_{z} = 70$ nm, $W_{AI} = 100$ nm, $W_{SIO} = 150$ nm, $L_{cell} = 150$ nm, $r_{al} = 0.5$, $V_{al} = 0$ meV, V_{7} =1.5meV, T=10mK.

References.- [1] Hao Zhang *et al.*, Nature 556, 7699 (2018). [2] Yoav Levine, Arbel Haim, and Yuval Oreg, Phys. Rev. B 96, 165147 (2017).