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ABSTRACT: Spectroscopic measurements in recent Majorana Nanowire experiments [1] exhibit Zero Bias Peaks compatible with 
the existence of Majorana Bound States (MBS). However, a proof of the non-locality of its wavefunction is still lacking. In this work we 
study a recently proposed configuration [2] in which the semiconductor nanowire is placed over a superlattice array of superconductor 
(SC) fingers, allowing a STM tip to measure the local dI/dV on top of the wire, revealing the non-local nature of the MBS. Here, we 
focus on the impact of the inhomogeneous electrostatic potential created by this superlattice on the Nanowire spectral properties. For 
that purpose, we use a 3D finite model for the Nanowire and we compute the electrostatic profile solving self-consistently the 
Poisson equation. We analyze which are the optimal superlattice parameters for obtaining robust MBS.
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We use the effective Hamiltonian for a 3D 
Majorana nanowire…

Where Δ(x,y,z) is given by a step-function (Δ(x)=Δ
0
 

when x is over a SC finger and 0 otherwise) and 
φ(x,y,z) is obtained by solving the Poisson 

equation in the whole space.
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● The inhomogeneous superconductivity lessens the topological protection.
● Depending on the superlattice parameters, the robustness of the topological phase may be 
weaker. That occurs when L

cell
 is either, as small that different longitudinal bands are close one 

to each other (compared to the other energy scales), or when L
cell

 is comparable to λ
MBS

.
● Attending to these aspects and the capability for gating, some superlattice constants are not 
desirable for obtaining robust MBS.

● For the desirable superlattice constants values, we obtain topologically protected MBSs with a 
wavelength given by λ

MBS
, while the charge density of the wire oscillates with the periodicity of 

the superlattice.  
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● Large lever arms also mean large potential 
oscillations. That could create QDs along the 
wire instead of extended quasiparticles.

Optimal Superlattice Parameters Results for a 3D nanowire with Poisson
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● The induced superconductivity is 
always smaller, leading to less 
topological protection.
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● Longitudinal sub-bands emerge due to the 
superlattice periodicity (even-odd effect).

● Trivial holes emerge when λ
MBS

=L
cell

.

We discard those parameters for which:
●  gating the wire is difficult.
●  trivial holes are created.
●  longitudinal sub-bands are close one to         
 each other.

Phase Diagram for a 1D nanowire Its corresponding bulk topological phase

● The energy spectrum for L
cell

=150nm 
and r

Al
=0.5 shows MBSs (red). However, 

there is a topologically trivial hole.
● There are zero energy pinned regions.

● The charge density (top) oscillates with the 
periodicity of the superlattice.

● The dI/dV (bottom) shows the MBSs at 
zero energy, with a different periodicity.
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