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Applications in:
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- Topological superconductivity
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Motivation
Outline

Introduction

There is no need of an external magnetic field if it can be intrinsically incorporated. Recent
experimental works show that it is possible to induce an exchange field in the nanowire by

proximitizing an EuS layer to the heterostructure. This device shows ZBP compatible
with the existence of MBS.
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Introduction

There is no need of an external magnetic field if it can be intrinsically incorporated. Recent
experimental works show that it is possible to induce an exchange field in the nanowire by

proximitizing an EuS layer to the heterostructure. This device shows ZBP compatible
with the existence of MBS.
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Could be the ZBP Majorana
Bound States? Why these
devices do not show ZBP? How

is induced the magnetization?

Strikingly, other
geometries show little or
no induced magnetization
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Realistic model

We include in the Hamiltonian all the materials involved in the heterostructure using
realistic parameters. We also include the self-consistent electrostatic environment.
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Model

Realistic model et ping device

- Non-overlapping device

We compute the energy spectrum versus the momentum Kk, for the _\

overlapping device fixing all the gates to V,=0. From there, we I I

also compute the DOS. We perform three different simulations.
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- Non-overlapping device

We compute the energy spectrum versus the momentum Kk, for the _\

overlapping device fixing all the gates to V,=0. From there, we I I

also compute the DOS. We perform three different simulations.
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Model
Results

- Overlapping device
- Non-overlapping device
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Realistic model

We compute the energy spectrum versus the momentum Kk, for the
overlapping device fixing all the gates to V,=0. From there, we
also compute the DOS. We perform three different simulations.
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Realistic model

We compute the energy spectrum versus the momentum Kk, for the
overlapping device fixing all the gates to V,=0. From there, we
also compute the DOS. We perform three different simulations.
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Results

- Overlapping device
- Non-overlapping device
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. Rouko et al., Phys. Rev. B 100, 184501 (2019)
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in the SC, as previous experiments showed
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- Overlapping device
- Non-overlapping device
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Realistic model

We compute the energy spectrum versus the momentum Kk, for the
overlapping device fixing all the gates to V,=0. From there, we
also compute the DOS. We perform three different simulations.
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Realistic model

We perform exactly the same simulations but for the non-
overlapping device. I I
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Realistic model

We perform exactly the same simulations but for the non-
overlapping device. I I
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Realistic model RSt ing dvic

- Non-overlapping device

L=

We perform exactly the same simulations but for the non-

overlapping device.
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Model

Realistic model RSt ing dvic

- Non-overlapping device
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Model

Effective model e oving devce

- Non-overlapping device

We “integrate out” the Al and the EuS, and we directly include the proximity effects into
the InAs nanowire in an effective way. This reduces the computational cost and allows
to find the phase diagram.

There is only a
superconducting
pairing of A=0.2meV
in this proximitizing
region (Wg=30nm),
as well as an
exchange field of

There is an exchange
field of hl,.°=0.1eV in
this prOX|m|t|Z|ng
region (W, =1nm)

h.,=0.06meV
hek Ll 2 By (2 D).
H =5+ Br = ed(7) + hex(M)ow + AF)7e0: + 5 a(F)- (@ x K) + (& x k) - ()]




Model

Effective model e oving devce

- Non-overlapping device

We “integrate out” the Al and the EuS, and we directly include the proximity effects into
the InAs nanowire in an effective way. This reduces the computational cost and allows
to find the phase diagram.

There is only a
superconducting
pairing of A=0.2meV
in this proximitizing
region (Wg=30nm),
as well as an
exchange field of
h.,=0.06meV

There is an exchange
field of h°=0.1eV in
this proximitizing
region (W, =1nm)

We compute the induced magnetization and superconductivity. We choose Wg and
W,, in such a way to reproduce (roughly) the same behaviour as in the realistic model.




Effective model
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Effective model

(AI) (EuS)
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Phase diagram vs V,,, (fixing V| =0 and V=-4V) for an A
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Effective model

Phase diagram vs V,,, (fixing V| =0 and V=-4V) for an
overlapping device with direct-induced magnetization
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Effective model

Phase diagram vs Vi, (fixing V| =0 and V,=-2V) for an
overlapping device with direct-induced magnetization




Model
Results

- Overlapping device
- Non-overlapping device

Effective model
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Effective model

Phase diagram vs Vi, (fixing V|, =0 and V,=-2V) for a non-
overlapping device with direct-induced magnetization
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Results
- Overlapping device

- Non-overlapping device

Effective model
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Conclusions and outlook

Conclusions

- InAs/Al/EuS heterostructures intrinsically incorporates the effect of a Zeeman field
large enough so that they can support MBS.

- Only some specific geometries give rise to MBS, because the wavefuntion needs to
be close to the EuS-InAs and Al-InAs interfaces at the same time. The strength of the

proximity effects can be controlled by the gates.

Reference
- Microscopic analysis of topological superconductivity in ferromagnetic hybrid nanowires,
Samuel D. Escribano, Elsa Prada, Yuval Oreg and Alfredo Levy Yeyati, arXiv:2011.06566 (2020).

For any question or inquire, don't hesitate to contact me via
email at samuel.diaz@uam.es, thank you for your attention!
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A: Effective Model



Electrostatic potential
Induced superconductivity
O e Induced Zeeman field

The electrostatic potential is determined self-consistently (in the Thomas-Fermi

approximation) using the Poisson equation. The electrostatic environment is taken into
account through the dielectric permittivity.

V(e() - V(7)) = p(7)

: HfO, 10nm
SiO, 8nm Al 6 nm A6 nm

(Vg gate electrode)

Au 150 nm/
Ti 5nm

(VLgate electrode)

Au 150 nm/
Ti 5nm

(Vg gate electrode)

Au 150 nm/ N B0
Ti 5nm Ti 5nm

A recent experiment shows that there is an accumulation layer at the InAs-EuS interface
similar to the one of the free facets. Thus, we include the same accumulation layer p,. in
the nanowire facets that are not in contact with Al. Additionally, we simulate the InAs-Al
band bending imposing V¢ as boundary condition on the Al.




Overlapping device

Vpg=-1V

V=1V

As the back-gate
voltage is increased,
the wavefunction is
pushed towards the
bottom of the wire.

Electrostatic potential
Induced superconductivity
Induced Zeeman field

Non-overlapping device




Overlapping device

,  Vg=-2V

As the right-gate

= voltage is increased the
wavefunction is pushed

-2 towards the EuS.

The proximity effects,
) both with Al and EuS
E can thus be controlled
& by the gates.

V=2V

Electrostatic potential
Induced superconductivity
Induced Zeeman field

Non-overlapping device

2




To describe the superconductivity inside the semiconductor, one would need, in principle,

to include the superconducting layer also at a tight-binding level. InAs Al
0
The SC is described as a metallic region w 10eV
(with a band-offset of -10eV) with a paring
amplitude A N |
One can obtain the Tt
0.8 °
spectra of the system < ° .
for different gates, £0° * e
and from there, the <1 04 , , , —.
DOS in the wire and 0.2 ’
the induced gap (the . | | | L
-4 -3 2 1 0 1

minimum gap A

min)-




Electrostatic potential

Induced superconductivity
Induced Zeeman field

To describe the superconductivity inside the semiconductor, one would need, in principle,

to include the superconducting layer also at a tight-binding level. InAs Al
0
The SC is described as a metallic region 028V 10eV
Wit 2 band-offset of -10eV) with a paring
amplitude A -
®ma.can obtain the ol Tt
spectra oTthe < N
for diffeserTgates, £9°] * e
find from there, the <L} ¢
DOS in the wire and 0.2 :
the induced gap (the 0 , *
. -4 3 -2 0 1
minimum gap A_,). Vi (V)

: :

Unfortunately, this is not computationally affordable.

s




A different approach to include the proximity effect in the wire is to assume that a region
of width W, close to the InAs/Al interface is characterized by a paring amplitude A.

The SC is described as
a hard wall (not included

in the TB) T oo |
08 —__'N. ® e
%o.e \ S
It is possible to do the 3 o
_ <1 04 : , ! !
same for this system .
(blue line). 02 ,\\
: 0% 3 2 -1 0 1
A'is present only Vi, (V)

in this region

Using W¢-=30nm we predict a similar behaviour.




Electrostatic potential
Induced superconductivity

Induced Zeeman field

It is not clear how the magnetization induced by the EuS influences the state of the
nanowire. There are two possible scenarios, which could be complementary.

Model 1: direct-induced magnetization

(EuS)
ex

ho=0.07meV h

The EusS directly induces an exchange field ( 2{Z*%) in
the InAs. Because the EuS is an insulator, the
proximitized region is small (1nm), but with a large
exchange field. In addition, it is known that there is a
small exchange field (h{4)=0.07meV) in the Al due to
the AI/EuS interface.

Model 2: indirect-induced magnetization

Ho>A

The EuS induces an exchange field 1{4Vin the InAs
through the Al layer in an indirect way. The exchange
field induced in the SC due to the Al-EuS interface is
indeed, for whichever reason, larger than A. The spin-

orbit coupling opens a gap even if the Clogston limit is

reached.




To show that the first model is also plausible, let us describe first the EuS at a tight-binding

level as well.

The EuS is described as an insulating region (with a
band-offset of 0.8eV) characterized by a large
exchange field h,, (with a Zeeman splitting of 0.1eV)

One can obtain the
spectra of the system
for different gates, and
from there, the
induced magnetization
in the wire.

InAs EuS
0.1eV
0.8eV
[( e [
-0.1eV
2
15
?o '..........
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N ®ee,
0
-4 3 -2 1 0 1




Electrostatic potential
Induced superconductivity

Induced Zeeman field

Although it is (computationally) affordable to include the EuS at a tight-binding layer, let us
describe it as a proximitized region close to the InAs-EuS interface, as we did for the Al.

The EuS is described
as a hard wall (not
included in the TB)

WEuS

It is possible to do the
same for this system
(blue line).

h,, is present only
in this region

Using W s=1nm and h_,~ 100meV we predict a similar behaviour.

s
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DOS vs V,, for the overlapping device w
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Overlapping device

D O S VS V b Non-overlapping device

DOS vs V,, for the overlapping device with h, #0 (double) and
aL70.
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Supplementary Material

C: 4-facets geometry
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Supplementary Material

D: Extended phase diagram for the non-overlapping



Model

Effective model RS ping devce

- Non-overlapping device

(EuS)

Phase diagram vs Vi, (fixing V|, =0 and V,=-2V) for a non-
overlapping device with direct-induced magnetization
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Effective model RS ping devce

- Non-overlapping device

(EuS)

Phase diagram vs Vi, (fixing V|, =0 and V,=-2V) for a non-
overlapping device with direct-induced magnetization
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- Non-overlapping device
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Phase diagram vs Vi, (fixing V|, =0 and V,=-2V) for a non-

A hex
overlapping device with direct-induced magnetization vV, I / > IvR
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