SEMICONDUCTOR-FERROMAGNET-SUPERCONDUCTOR PLANAR HETEROSTRUCTURES FOR 1D TOPOLOGICAL SUPERCONDUCTIVITY

npj Quantum Materials 7, 81 (2022)

Samuel D. Escribano

Motivation Model Results

Early theoretical works proposed that topological superconductivity could be achieved in heterostructures mixing three materials

Semiconductor with SO coupling + Superconductor + Magnetic insulator

Motivation Model Results

Overlapping geometry Shows ZBP compatible with MBSs

Nanowire-based platforms:

- The wavefunction in nanowires spreads all across the section (weak proximity effects).
- Difficult to manipulate and escalate.
- Moreover, wires usually present high degree of disorder.

Motivation Model Results

The insulator should be thin enough to allow electrons to tunnel through

But thick enough to induce a strong magnetization

Optimal FI thickness?

Motivation Model Results

Motivation Model Results

Motivation Model Results

Motivation Model Results

Motivation Model **Results**

Spectrum (at $k_x=0$) for different FI thicknesses

Motivation Model **Results**

We analyze the evolution of different subbands for different FI thicknesses

We find that around 1.5 to 3 nm, InAs-EuS-Al heterostructures can support a topological superconducting phase

Motivation Model **Results**

Planar-based heterostructures show stronger confinement, leading to:

- Stronger proximity effects
- More regular and larger topological phases (predictability)
- Larger minigaps

