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* MBS are topological subgap modes that can emerge at yL=y§
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There is no need of an external magnetic field if it can be intrinsically incorporated. Recent
experimental works show that it is possible to induce an exchange field in the nanowire by
proximitizing an EuS layer to the heterostructure.

This device shows ZBP compatible
with the existence of MBS.

) . Ve (V) )
(a) 0) =Tiay = A =mEus Yo H‘ﬁ.H“ (©) 1.02 106 Ve 1.10
Al device 2 ! 1 5
EuS _ E 0 %
|‘ —~ é
0.5 um 0.1 0
Ve Ve Vee 32 3.0 28 26
Vaz (V)

Y. Liu et al., ACS App. Mat. 12, 8780 (2020)
Refs. < Y. Liu et al., Nano Lett. 20, 456 (2020)
S. Vaitiekeénas et al. ArXiv:2004,02226 (2020)




. Majo_rana_Bound States (MBS)
Introduction e

There is no need of an external magnetic field if it can be intrinsically incorporated. Recent
experimental works show that it is possible to induce an exchange field in the nanowire by
proximitizing an EuS layer to the heterostructure.

This device shows ZBP compatible
with the existence of MBS.

@) © -1.02 106 Ve(V) 1.10
Al | device 2
EuS E o= %
[ E
01 0
Ve Vi Vs 32 -3.0 28 26
VBG W}

Strikingly, other
geometries show little or
no induced magnetization
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Motivation

Introduction

There is no need of an external magnetic field if it can be intrinsically incorporated. Recent
experimental works show that it is possible to induce an exchange field in the nanowire by

proximitizing an EuS layer to the heterostructure. _ . :
This device shows ZBP compatible

with the existence of MBS.
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Could be the ZBP Majorana

Bound States? Why these
<« devices do not show ZBP? How

Is induced the magnetization?
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Useful to understand the

- f induced magnetization
* Realistic model

+ Overlapping device
+ Non-overlapping device

Useful to study the

. Effective model <~ Phase diagram
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» Non-overlapping device device device
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e Conclusions




Model

Realistic model

We include in the Hamiltonian all the materials involved in the heterostructure using
realistic parameters. We also include the self-consistent electrostatic environment.




Model

Realistic model

* Non-overlapping device
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We compute the energy spectrum versus the momentum k_for the
overlapping device fixing all the gates to V.=0. From there, we
also compute the DOS. We perform three different simulations.

Moy
="
L

o = o
- £ 8
E (meV)

DOSus %]

Wire
: lE(meV)
W
DOSas [%]
Wire
Wire
E (meV)
DOy (%]

b

037 1 1
2
5 02 ; 1K) Ay § s 08
g _n = LTIECH = S =
S % 0 _ 3 i i hegt - = 06 =
§ E o = &I 5 E =~ H & E = 715
¢ E = & s E e &L g £ 0= g
E’_ Wa3 = a W = E‘é_ Ll a
R0 LRl 02 S g o
N .ANAA AL M w v
03 0 0 0
01 02 03 04 04 02 ] 02 04 5 %4 o2 ] 02 04
k (nm™1) E (meV) E (meV)

E (meV)




1 "s0q V5o
0.

UM VM

] L)
=] o o

(Aow) 3
103anpuodsedng




Model

Realistic model

* Non-overlapping device
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We compute the energy spectrum versus the momentum k_for the
overlapping device fixing all the gates to V.=0. From there, we
also compute the DOS. We perform three different simulations.
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Model

Realistic model

* Non-overlapping device
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We compute the energy spectrum versus the momentum k_for the
overlapping device fixing all the gates to V.=0. From there, we
also compute the DOS. We perform three different simulations.
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Model

Realistic model

* Non-overlapping device

We compute the energy spectrum versus the momentum k_ for the
overlapping device fixing all the gates to V.=0. From there, we . l

also compute the DOS. We perform three different simulations.
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A small exchange field of 0.06meV is also induced
in the SC, as previous experiments showed

M. Rouko et al., Phys. Rev. B 100, 184501 (2019) J “




Model

Realistic model

* Non-overlapping device
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We compute the energy spectrum versus the momentum k_for the
overlapping device fixing all the gates to V.=0. From there, we
also compute the DOS. We perform three different simulations.
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Realistic model

We perform exactly the same simulations but for the non-
overlapping device.
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Realistic model

We perform exactly the same simulations but for the non-
overlapping device.
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For the non-overlapping device, the induced exchange
field seems not to be large enough to close the gap




Model

Realistic model

* Non-overlapping device

We perform exactly the same simulations but for the non-
overlapping device.
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Model

Realistic model

* Non-overlapping device
We perform exactly the same simulations but for the non-
overlapping device. . l
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Model

Effective model

* Non-overlapping device

We “integrate out” the Al and the EuS, and we directly include the proximity effects into
the InAs nanowire in an effective way. This reduces the computational cost and allows
to find the phase diagram.

There is only a
superconducting
pairing of A=0.2meV
in this proximitizing
region (W,.=30nm),
as well as an
exchange field of
h,=0.06meV

There is an exchange
field of h_."=0.1eV in
this proximitizing
region (W_=1nm)

We compute the induced magnetization and superconductivity. We choose W__and W_
in such a way to reproduce (roughly) the same behaviour as in the realistic model.




Model

Effective model

* Non-overlapping device

We “integrate out” the Al and the EuS, and we directly include the proximity effects into

the InAs nanowire in an effective way. This reduces the computational cost and allows
to find the phase diagram.

There is only a
superconducting
pairing of A=0.2meV
in this proximitizing
region (W,.=30nm),
as well as an
exchange field of
h,=0.06meV

There is an exchange
field of h_."=0.1eV in
this proximitizing
region (W_=1nm)
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Effective model

Phase diagram vs Vig (fixing V =0 and V_=-4V) for an
overlapping device with direct-induced magnetization
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Effective model

Phase diagram vs Vig (fixing V =0 and V_=-4V) for an
overlapping device with direct-induced magnetization
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Effective model
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Effective model

Phase diagram vs V_ (fixing V =0 and ng:-ZV) for an
overlapping device with direct-induced magnetization
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Model

Effective model

* Non-overlapping device
h (A) h(EuS)

Phase diagram vs V_ (fixing V =0 and ng:-ZV) for an
overlapping device with direct-induced magnetization
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Effective model

Phase diagram vs V_ (fixing V =0 and ng:-ZV) for a non-
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Effective model

Phase diagram vs V_ (fixing V =0 and ng:-ZV) for a non-
overlapping device with direct-induced magnetization
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Effective model

Phase diagram vs V_ (fixing V =0 and ng:-ZV) for a non-
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Model

Effective model

* Non-overlapping device
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Conclusions and outlook

Conclusions

* InAs/Al/EUS heterostructures intrinsically incorporates the effect of a Zeeman
field large enough so that they can support MBS.

* Only some specific geometries give rise to MBS, because the wavefuntion
needs to be close to the EuS-InAs and Al-InAs interfaces at the same time. This
can be controlled by the gates.

Outlook

* How does the MBS wavefunction look like in finite-size nanowires? And their
energies?
* How do they compare with experimental data?

For any question or inquire, don’t hesitate to contact me via
email at samuel.diaz@uam.es, thank you for your attention!




Supplementary Material

A: Effective Model



Electrostatic potential

Induced superconductivity
O e Induced Zeeman field

The electrostatic potential is determined self-consistently (in the Thomas-Fermi

approximation) using the Poisson equation. The electrostatic environment is taken into
account through the dielectric permittivity.

V(e() - V(7)) = p(7)

: / \ HfO, 10nm
SiO,8nm Al 6 nm Al6 nm

(V,gate electrode)

Au 150 nm/
Ti 5nm

(V. gate electrode) (V ate electrode)
Au 150 nmy Au 150 nm/
Ti 5nm Ti 5nm

(VLgate electrode)

Au 150 nm/
Ti 5nm

A recent experiment shows that there is an accumulation layer at the InAs-EuS interface
similar to the one of the free facets. Thus, we include the same accumulation layer p___in

the nanowire facets that are not in contact with Al. Additionally, we simulate the InAs-Al
band bending imposing V__ as boundary condition on the Al.




Model

Overlapping device

As the back-gate voltage
IS increased, the
wavefunction is pushed
towards the bottom of
the wire.

Electrostatic potential
Induced superconductivity
Induced Zeeman field

Non-overlapping device




Model

Overlapping device

As the right-gate voltage
Is increased the
wavefunction is pushed
towards the EuS.

The proximity effects,
both with Al and EuS
can thus be controlled
by the gates.

Electrostatic potential

Induced superconductivity
Induced Zeeman field

Non-overlapping device




Electrostatic potential

Induced superconductivity
O e Induced Zeeman field

To describe the superconductivity inside the semiconductor, one would need, in principle,
to include the superconducting layer also at a tight-binding level. A Inas Al

The SC is described as a metallic region 0:2eV 10ev
(with a band-offset of -10eV) with a paring X
amplitude A

[

One can obtain the
0.8 ®
spectra of the system a .
for different gates, E
» and from there, the ——® <7 04/ | | | .
DOS in the wire and _ ¢

0.21

the induced gap (the . °

minimum gap A ). -4 3 2 1 0 1




Electrostatic potential

Induced superconductivity
O e Induced Zeeman field

To describe the superconductivity inside the semiconductor, one would need, in principle,

to include the superconducting layer also at a tight-binding level. % InAs Al
’ %
The SC is described as a metallic region 026V A
mith a band-offset of -10eV) with a paring
amplitude A -
®ma,can obtain the '....o
0.8 ' i . '
spectra O™ “ * .
’ for djffgser®gates, gos *
gnd from there, the 1 0.4 .
DOS in the wire and 02] | ¢
the induced gap (the °
minimum gap A ). % 3 -2 : 0 1
min %g (V)

: :

Unfortunately, this is not computationally affordable.




Electrostatic potential
Induced superconductivity
O e Induced Zeeman field

A different approach to include the proximity effect in the wire is to assume that a region of
width W__ close to the InAs/Al interface is characterized by a paring amplitude A.

The SC is described as
a hard wall (not
included in the TB)

It is possible to do the
W "\< same for this system
sc (blue line).

Ais present only
in this region

Using W_.=30nm we predict a similar behaviour.




Model

Electrostatic potential
Induced superconductivity

Induced Zeeman field

It is not clear how the magnetization induced by the EuS influences the state of the nanowire.
There are two possible scenarios, which could be complementary.

Model 1: direct-induced magnetization

(Al)

h. %0.07meV o)

ex

The EuS directly induces an exchange field (héf“s)
the InAs. Because the EuS is an insulator, the
proximitized region is small (1nm), but with a large
exchange field. In addition, it is known that there is a
small exchange field (hgx;‘l)zo.O?meV) in the Al due to

the AI/EuS interface.

) in

Model 2: indirect-induced magnetization

I‘(]AI)>A

ex

The EuS induces an exchange field 2{" in the InAs
through the Al layer in an indirect way. The exchange
field induced in the SC due to the Al-EuS interface is
indeed, for whichever reason, larger than A. The spin-
orbit coupling opens a gap even if the Clogston limit is

reached.




Model

To show that the first model is also plausible, let us describe first the EuS at a tight-binding
level as well. A nas Eus

The EuS is described as an insulating region (with a :iofae(\)}lev
band-offset of 0.8eV) characterized by a large 0 :
exchange field h_ (with a Zeeman splitting of 0.1eV) i »

One can obtain the
spectra of the system

» for different gates,and ———»
from there, the
induced magnetization
in the wire. 0




Electrostatic potential
Induced superconductivity
O e Induced Zeeman field

Although it is (computationally) affordable to include the EuS at a tight-binding layer, let us
describe it as a proximitized region close to the InAs-EuS interface, as we did for the Al.

The EuUS is described
as a hard wall (not
included in the TB)

EuS

It is possible to do the
» same for this system ——»
(blue line).

h,, is present
only in this region

Using W_ .=1nm and h_= 100meV we predict a similar behaviour.
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B: DOS vs V,
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Overlapping device
Non-overlapping device

« DOSvsV for the overlapping device with
h_#0 and a_=0.
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Overlapping device
Non-overlapping device

« DOSvsV for the overlapping device with
h_#0 and a_#0.
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Overlapping device
Non-overlapping device

« DOSvsV for the overlapping device with
h_#0 (double) and o_#0.
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Overlapping device
Non-overlapping device

DOS vs V,

« DOSvsV for the non-overlapping device.
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Supplementary Material

C: 4-facets geometry



Overlapping device
Non-overlapping device

and o_=0.
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