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Motivation

Spin Hall effect
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Quantum spin Hall effect
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Amom%l all the semiconductors (SMs),
which are materials that allows for

tunable conductance, III-V compound
SMs present a large SO interaction
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SO interaction

The Hamiltonian is like the one of a free-
electron with renormalized parameters
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The SO coupling is Rashba type,
origin as a result of the interaction
with the hole bands
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Amom%l all the semiconductors (SMs), The SO coupling is Rashba type,
which are materials that allows for origin as a result of the interaction
tunable conductance, III-V compound with the hole bands
SMs present :
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We follow exactly the same derivation
including a constant strain in the SM using
the Bahder approximation
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The Hamiltonian is very similar.
Few remarks:

e S0 interaction can no longer be
written, in general, through a
SO coupling.

o The effective-mass and the g-
factor are now tensors with
non-diagonal components.

e The strength of all these depend
on the strength and type of the
strain




Experiments

One way to control strain, is through a smart choice of the
insulating substrates

Strain engineering

Insulating SM —
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Experiments

We explore experimentally InAs-InP core-shell SM NWs
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The strain near the interface is around 5%




Experiments

We perform magnetoconductance measurements to extract the

SO coupling
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Experiments

We compare the
experimental results with
our simulations, looking for
the strain that fits the best
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We perform self-consistent
Schrodinger-Poisson
simulations




Experiments

We compare the
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The results can only be explained once considered strain!
We obtain strain close to 5%




Take home message

o Strain—engineerin% of the SM material
properties is viable.

e We prove SO coupling can be enhanced
by ﬁProximitizing an insulating SM with
different lattice mismatch.

e Our theory predicts intriguing
phenomena!
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Supplemental material - exp

Comparison between the SO

coupling in different
platforms
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Supplemental material - theo

Electric field, SO
coupling and charge
density of the wire,
for two different gate
potentials
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Supplemental material - theo

Electric field, SO
coupling and charge
density of the wire,
for two different gate
potentials
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