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Motivation
The spin-orbit (SO) interaction 

is a relativistic effect that 
couples electron momentum 

and spin

A. Manchon et al. Nat. Mat. 14, 871 (2015).

Specially relevant in low-
dimensional materials where 

motion is constrained
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Among all the semiconductors (SMs), 
which are materials that allows for 

tunable conductance, III-V compound 
SMs present a large SO interaction

Motivation

R. Winkler et al., Spin-Orbit Coupling in Two-Dimensional Electron and Hole systems, Vol. 41 (Springer, 2003).
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Among all the semiconductors (SMs), 
which are materials that allows for 

tunable conductance, III-V compound 
SMs present a large SO interaction

Motivation

SO interaction

The Hamiltonian is like the one of a free-
electron with renormalized parameters

The SO coupling is Rashba type, 
origin as a result of the interaction 

with the hole bands

R. Winkler et al., Spin-Orbit Coupling in Two-Dimensional Electron and Hole systems, Vol. 41 (Springer, 2003).

In low-dimensional materials, strain is relevant at 
the interface between materials

Effects of strain? New equation?
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Theory
We follow exactly the same derivation 

including a constant strain in the SM using 
the Bahder approximation

With SO field



8

Theory
We follow exactly the same derivation 

including a constant strain in the SM using 
the Bahder approximation

The Hamiltonian is very similar. 
Few remarks:

● SO interaction can no longer be 
written, in general, through a 
SO coupling.

● The effective-mass and the g-
factor are now tensors with 
non-diagonal components.

● The strength of all these depend 
on the strength and type of the 
strain

With SO field
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Experiments
One way to control strain, is through a smart choice of the 

insulating substrates 

Strain engineering 

In stacking planar heterostructures In core-shell nanowires

Active SM

Insulating SM – 
creates strain
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Experiments
We explore experimentally InAs-InP core-shell SM NWs

The strain near the interface is around 5%
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Experiments
We perform magnetoconductance measurements to extract the 

SO coupling

B
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Experiments
We compare the 

experimental results with 
our simulations, looking for 
the strain that fits the best 

We perform self-consistent 
Schrödinger-Poisson 

simulations 
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Experiments
We compare the 

experimental results with 
our simulations, looking for 
the strain that fits the best 
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The results can only be explained once considered strain! 
We obtain strain close to 5%

We perform self-consistent 
Schrödinger-Poisson 

simulations 
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Take home message
● Strain-engineering of the SM material 

properties is viable.
● We prove SO coupling can be enhanced 

by proximitizing an insulating SM with 
different lattice mismatch.

● Our theory predicts intriguing 
phenomena!

Samuel. D Escribano – samuel.diazes@gmail.com
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Supplemental material - exp

Characterization of its 
behaviour as a field effect 
transistor (FET), at room 

temperature (RT) and 1.7 K

Behaves as expected 
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Supplemental material - exp

Comparison between the SO 
coupling in different 

platforms 
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Supplemental material - theo

Electric field, SO 
coupling and charge 
density of the wire, 

for two different gate 
potentials
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Supplemental material - theo

Electric field, SO 
coupling and charge 
density of the wire, 

for two different gate 
potentials
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