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• A Majorana particle is a fermion that is its own antiparticle. They
correspond to solutions of the Dirac equation with .

• Superconductivity violates charge conservation.

• In spinless p-wave superconductors, Bogoliubov quasi-particles can
satisfy .

• Type p superconductivity is induced in semiconductor nanowires with:
− proximity effect to type s superconductors
− high spin-orbit coupling
− And applying an external magnetic field.
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:

Ĥ
0

=
⇥�
~2k2x/2m� µ

�
�
0

+ ↵�ykx + VZ�x

⇤
⌧z +��y⌧y,

where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
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same energy, placed at (for µ = 0):
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also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘
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�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z
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logical order (class D topological insulator) above V c
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This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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~2k2x/2m� µ
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+ ↵�ykx + VZ�x
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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where kSO = m↵/~2 and kZ =
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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⇤
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):

@E2

±
@k

����
kF

= 0 ! kF =

r
2k2SO +

q
4k4SO + k2Z , (4)
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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where kSO = m↵/~2 and kZ =
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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~2k2x/2m� µ
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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=
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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where kSO = m↵/~2 and kZ =
p
2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has

Samuel	Díaz Escribano

2

Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):

@E2

±
@k

����
kF

= 0 ! kF =

r
2k2SO +

q
4k4SO + k2Z , (4)

where kSO = m↵/~2 and kZ =
p
2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field hasx
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:
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where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:

E2

± =

✓
~2k2
2m

� µ

◆
2

+ (↵k)
2

+ V 2

z +�2±

± 2

s

(�Vz)
2

+
⇣
(↵k)

2

+ V 2

z

⌘✓
~2k2
2m

� µ

◆
2

. (2)

Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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where kSO = m↵/~2 and kZ =
p
2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ✏, length L, and section Ry ⇥ Rz, is
placed over a substrate (✏d), and contacted between two nor-
mal metal leads (✏M ! 1). One facet is covered by a SC shell
(✏SC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ⇢ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v⇤, a � excitation is different
from �† = v⇤c# + u⇤c†" = uc# + vc†" due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

� = uc†� + vc�. (1)

These operators satisfy �† = �, and thereby �†� = �2 =
1 and {�i, �j} = 2�ij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:

Ĥ
0

=
⇥�
~2k2x/2m� µ

�
�
0

+ ↵�ykx + VZ�x

⇤
⌧z +��y⌧y,

where k is the electron momentum and m its effective
mass, µ is the chemical potential, ↵ the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, � is the in-
duced SC pairing amplitude[27], and {�x,�y,�z} the
Pauli matrices in spin space, and {⌧x, ⌧y, ⌧z} the Pauli
matrices in electron-hole Nambu space. Matrices �

0

and
⌧
0

are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:
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Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and � = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (� = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0 ! V c
Z ⌘

p
�2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z

2

topo-
logical order (class D topological insulator) above V c

Z .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):
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2VZm/~. Fig.(2b-d)

also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ⌘ �± '
�± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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crossing (called parity crossing), the total charge of the
wire increases abruptly by an amount QM (total charge
is plotted in Fig.(4b)). The lowest-energy eigenstates in
a parity crossing are shown in Fig.(4c). Eigenstates ex-
hibit oscillations with periodicity �F /2 from each end
of the nanowire due to VZ , µ and ↵. They are not
fully localized at the edges of the wire, but they decay
exponentially into the nanowire center with a decaying
length[13] given by hvF /� = h

p
2VZ/�

p
m. Both eigen-

states are orthogonal since �F /2 is an integer multiple
of the length. Outside a parity crossing (Fig.(4d)) this
is not true: because �F /2 is not an integer multiple of
the length, they are not orthogonal. MZM are no longer
eigenstates but they hybridize into two Nambu eigen-
states with different parity  
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Thus, the charge of this Majorana state  M is non-zero
despite it is a superposition of two neutral MZM owing
to the spatial overlap between both.

B. Experimental status

It has been theoretically shown that Majoranas ap-
pear in 1D systems at zero energy on each side of the
wire, at magnetic fields larger than V c

Z . It has been also
shown how energy levels behave when the magnetic field
is changed. Both elements can be used to detect MZM
experimentally. However, measuring something at zero
energy is often difficult. For this reason, most of the ex-
perimental researches use the same technique: tunneling
spectroscopy. This tool measures the differential con-
ductance dG = dI/dV between the ends of the wire by
measuring the current I at a certain applied voltage V .
This conductance is roughly proportional to the density
of states of the system, which directly measures the num-
ber of accessible states at energy V . Hence, experiments
should show a zero-bias peak (ZBP) on each side of the
wire for the differential conductance[28].

During the last five years, experiments using this
method have been performed [6–10]. Experimental re-
sults of Ref.[7] are shown in Fig.(5a). The nanowire
(green) is made of InAs, a semiconductor which is known
to have strong spin-orbit interaction and a large g factor.
It is growth over a SiO

2

substrate. A thin SC layer of Alu-
minum (blue) only cover the third part of the nanowire,

avoiding complete screening of the underlying gates (yel-
low), which are used to change the applied voltage VG

(chemical potential). Two Ti/Au normal leads (yellow)
attached on each side of the nanowire are used for mea-
suring the differential conductance.

Fig.(5b) shows the differential conductance versus volt-
age at 50mK taken at different magnetic fields. There is
a ⇠ 0.2meV SC pairing, as it can be seen at zero mag-
netic field through the gap. At a certain magnetic field
(⇠ 200mT), one peak emerges at zero energy, which oscil-
lates around this energy for larger magnetic fields. This
ZBP is arguably the MZM, but there are many other
low-energy phenomena that could lead to a ZBP. For
this reason, the researchers have considered various op-
tions which could explain this ZBP, as the Kondo effect
or Andreev Bound States (ABS). However, ZBP due to
the Kondo effect or ABS should split and move to finite
energy when the magnetic field is changed. Hence, they
conclude that this ZBP is the MZM.

However the behavior of the energy levels seems not to
be totally in agreement with the theory: the first ZBP at
200mT pins at zero energy for almost 100mT, instead of
being just a crossing point. Another experiments exhibit
also this behavior. This is the case of Ref.[8] which their
experimental set-up is shown in Fig.(5c): a nanowire
made of InSb, also known for its strong spin-orbit in-
teraction and a large g factor, is coverage by a SC shell
of NbTiN (yellow), which has a large SC critical mag-
netic field. One Ag normal lead (magenta) together with
a barrier gate (orange) is used for measuring the differ-
ential conductance.

Fig.(5d) shows the corresponding differential conduc-
tance versus voltage at 50mK taken at different magnetic
fields. The induced gap is close to 0.4meV, as it can be
seen at zero magnetic field. At a certain Zeeman split-
ting (⇠ 0.4meV), one peak emerges at zero energy. But,
in this experiment, this peak seems to be pinned at zero
energy for, at least, 300mT: at 0.75T the ZBP seems to
be wider and blurrier. This could be one energy oscilla-
tion, but of course, it is smaller than those predicted by
the theory. It also shows pinned regions that theory is
not able to explain.

The aim of our work is to explain the above mentioned
discrepancy between theory and experiments following
the ideas of Ref.[16]. We have seen that each parity-
crossing introduces a charge QM into the system. Then,
if the dielectric environment is repulsive (✏

environment

<
✏
wire

), bound charges of the same sign arise in the en-
vironment (SC shell, leads, substrate and/or air or vac-
uum). It creates a repulsive “self”-interaction between
these bound charges and the real one, whose entrance
into the nanowire is then suppressed, leading to MZM
pinned regions.
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is plotted in Fig.(4b)). The lowest-energy eigenstates in
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despite it is a superposition of two neutral MZM owing
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It has been theoretically shown that Majoranas ap-
pear in 1D systems at zero energy on each side of the
wire, at magnetic fields larger than V c

Z . It has been also
shown how energy levels behave when the magnetic field
is changed. Both elements can be used to detect MZM
experimentally. However, measuring something at zero
energy is often difficult. For this reason, most of the ex-
perimental researches use the same technique: tunneling
spectroscopy. This tool measures the differential con-
ductance dG = dI/dV between the ends of the wire by
measuring the current I at a certain applied voltage V .
This conductance is roughly proportional to the density
of states of the system, which directly measures the num-
ber of accessible states at energy V . Hence, experiments
should show a zero-bias peak (ZBP) on each side of the
wire for the differential conductance[28].

During the last five years, experiments using this
method have been performed [6–10]. Experimental re-
sults of Ref.[7] are shown in Fig.(5a). The nanowire
(green) is made of InAs, a semiconductor which is known
to have strong spin-orbit interaction and a large g factor.
It is growth over a SiO
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substrate. A thin SC layer of Alu-
minum (blue) only cover the third part of the nanowire,

avoiding complete screening of the underlying gates (yel-
low), which are used to change the applied voltage VG

(chemical potential). Two Ti/Au normal leads (yellow)
attached on each side of the nanowire are used for mea-
suring the differential conductance.

Fig.(5b) shows the differential conductance versus volt-
age at 50mK taken at different magnetic fields. There is
a ⇠ 0.2meV SC pairing, as it can be seen at zero mag-
netic field through the gap. At a certain magnetic field
(⇠ 200mT), one peak emerges at zero energy, which oscil-
lates around this energy for larger magnetic fields. This
ZBP is arguably the MZM, but there are many other
low-energy phenomena that could lead to a ZBP. For
this reason, the researchers have considered various op-
tions which could explain this ZBP, as the Kondo effect
or Andreev Bound States (ABS). However, ZBP due to
the Kondo effect or ABS should split and move to finite
energy when the magnetic field is changed. Hence, they
conclude that this ZBP is the MZM.

However the behavior of the energy levels seems not to
be totally in agreement with the theory: the first ZBP at
200mT pins at zero energy for almost 100mT, instead of
being just a crossing point. Another experiments exhibit
also this behavior. This is the case of Ref.[8] which their
experimental set-up is shown in Fig.(5c): a nanowire
made of InSb, also known for its strong spin-orbit in-
teraction and a large g factor, is coverage by a SC shell
of NbTiN (yellow), which has a large SC critical mag-
netic field. One Ag normal lead (magenta) together with
a barrier gate (orange) is used for measuring the differ-
ential conductance.

Fig.(5d) shows the corresponding differential conduc-
tance versus voltage at 50mK taken at different magnetic
fields. The induced gap is close to 0.4meV, as it can be
seen at zero magnetic field. At a certain Zeeman split-
ting (⇠ 0.4meV), one peak emerges at zero energy. But,
in this experiment, this peak seems to be pinned at zero
energy for, at least, 300mT: at 0.75T the ZBP seems to
be wider and blurrier. This could be one energy oscilla-
tion, but of course, it is smaller than those predicted by
the theory. It also shows pinned regions that theory is
not able to explain.

The aim of our work is to explain the above mentioned
discrepancy between theory and experiments following
the ideas of Ref.[16]. We have seen that each parity-
crossing introduces a charge QM into the system. Then,
if the dielectric environment is repulsive (✏
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), bound charges of the same sign arise in the en-
vironment (SC shell, leads, substrate and/or air or vac-
uum). It creates a repulsive “self”-interaction between
these bound charges and the real one, whose entrance
into the nanowire is then suppressed, leading to MZM
pinned regions.
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crossing (called parity crossing), the total charge of the
wire increases abruptly by an amount QM (total charge
is plotted in Fig.(4b)). The lowest-energy eigenstates in
a parity crossing are shown in Fig.(4c). Eigenstates ex-
hibit oscillations with periodicity �F /2 from each end
of the nanowire due to VZ , µ and ↵. They are not
fully localized at the edges of the wire, but they decay
exponentially into the nanowire center with a decaying
length[13] given by hvF /� = h
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Thus, the charge of this Majorana state  M is non-zero
despite it is a superposition of two neutral MZM owing
to the spatial overlap between both.

B. Experimental status

It has been theoretically shown that Majoranas ap-
pear in 1D systems at zero energy on each side of the
wire, at magnetic fields larger than V c

Z . It has been also
shown how energy levels behave when the magnetic field
is changed. Both elements can be used to detect MZM
experimentally. However, measuring something at zero
energy is often difficult. For this reason, most of the ex-
perimental researches use the same technique: tunneling
spectroscopy. This tool measures the differential con-
ductance dG = dI/dV between the ends of the wire by
measuring the current I at a certain applied voltage V .
This conductance is roughly proportional to the density
of states of the system, which directly measures the num-
ber of accessible states at energy V . Hence, experiments
should show a zero-bias peak (ZBP) on each side of the
wire for the differential conductance[28].

During the last five years, experiments using this
method have been performed [6–10]. Experimental re-
sults of Ref.[7] are shown in Fig.(5a). The nanowire
(green) is made of InAs, a semiconductor which is known
to have strong spin-orbit interaction and a large g factor.
It is growth over a SiO
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substrate. A thin SC layer of Alu-
minum (blue) only cover the third part of the nanowire,

avoiding complete screening of the underlying gates (yel-
low), which are used to change the applied voltage VG

(chemical potential). Two Ti/Au normal leads (yellow)
attached on each side of the nanowire are used for mea-
suring the differential conductance.

Fig.(5b) shows the differential conductance versus volt-
age at 50mK taken at different magnetic fields. There is
a ⇠ 0.2meV SC pairing, as it can be seen at zero mag-
netic field through the gap. At a certain magnetic field
(⇠ 200mT), one peak emerges at zero energy, which oscil-
lates around this energy for larger magnetic fields. This
ZBP is arguably the MZM, but there are many other
low-energy phenomena that could lead to a ZBP. For
this reason, the researchers have considered various op-
tions which could explain this ZBP, as the Kondo effect
or Andreev Bound States (ABS). However, ZBP due to
the Kondo effect or ABS should split and move to finite
energy when the magnetic field is changed. Hence, they
conclude that this ZBP is the MZM.

However the behavior of the energy levels seems not to
be totally in agreement with the theory: the first ZBP at
200mT pins at zero energy for almost 100mT, instead of
being just a crossing point. Another experiments exhibit
also this behavior. This is the case of Ref.[8] which their
experimental set-up is shown in Fig.(5c): a nanowire
made of InSb, also known for its strong spin-orbit in-
teraction and a large g factor, is coverage by a SC shell
of NbTiN (yellow), which has a large SC critical mag-
netic field. One Ag normal lead (magenta) together with
a barrier gate (orange) is used for measuring the differ-
ential conductance.

Fig.(5d) shows the corresponding differential conduc-
tance versus voltage at 50mK taken at different magnetic
fields. The induced gap is close to 0.4meV, as it can be
seen at zero magnetic field. At a certain Zeeman split-
ting (⇠ 0.4meV), one peak emerges at zero energy. But,
in this experiment, this peak seems to be pinned at zero
energy for, at least, 300mT: at 0.75T the ZBP seems to
be wider and blurrier. This could be one energy oscilla-
tion, but of course, it is smaller than those predicted by
the theory. It also shows pinned regions that theory is
not able to explain.

The aim of our work is to explain the above mentioned
discrepancy between theory and experiments following
the ideas of Ref.[16]. We have seen that each parity-
crossing introduces a charge QM into the system. Then,
if the dielectric environment is repulsive (✏
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), bound charges of the same sign arise in the en-
vironment (SC shell, leads, substrate and/or air or vac-
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these bound charges and the real one, whose entrance
into the nanowire is then suppressed, leading to MZM
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Fig. 3. Tunneling spectra for intermediate density in few-ABS regime.
(A) A schematic of device 1 showing the gating configuration for a combined
gate voltage sweep. g1 and g2,g3 are capacitively coupled to both the dot and
the nanowire. (B) Conductancemeasured at Vsd = 0mV, Vbg = –7 V, and B = 0,
as a function of Vg1 and Vg2,g3 (the gate map). g2 and g3 are connected to the
same voltage source. The high-conductance lines indicated by red arrows are
the resonant levels in the end dot. The dot can be used as a cotunneling
spectrometer if the gate sweeping is kept inside the Coulomb blockade valley
and parallel to the resonant level. (C to F) Tunneling spectra at various

magnetic fields as a function of the combined gate voltage, measured along
the red line in (B). The energy of the ABSs is strongly dependent on gate
voltages. (G to I) B-Vsd sweeps at different gate voltages, corresponding to
the triangle, square, and circle in (C) to (F), respectively. Depending on gate
voltages, the ABSs in the wire showdifferentmagnetic field evolution, from a
splitting behavior (G) to nonsplitting behavior (I). Arrows in (G) to (I) indicate
the first excited ABSs, and d in (H) is defined as the residual gap—the energy
of the first excited state around topological phase transition, caused by the
finite-size effect.
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Fig. 4. Stable zero-energy states measured on other devices. (A) SEM
images of device 2, in which local bottom gates are used. The hybrid wire
section is 1.5 mm long. (D) SEM image of device 3, with the hybrid wire
section length around 2 mm long. (B and E) Subgap states evolution in
magnetic field, measured on device 2 and device 3, respectively. In both
plots, stable zero-energy states arising from a pair of ABSs can be seen.

(B) is measured at Vg1 = –600 mV, Vg2 = –1840 mV, and Vg3 = 5 V, and (E) is
measured at Vg1 = 3720 mV, Vg2 = Vg3 = –5850 mV, and Vbg = –8 V. (C and
F) Gate voltage–dependence measurements of subgap states for device 2
and device 3, respectively. Both measurements are taken by following the
isopotential lines of the hybrid wires in one of their end-dot Coulomb
blockade valleys.
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as a function of Vg1 and Vg2,g3 (the gate map). g2 and g3 are connected to the
same voltage source. The high-conductance lines indicated by red arrows are
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spectrometer if the gate sweeping is kept inside the Coulomb blockade valley
and parallel to the resonant level. (C to F) Tunneling spectra at various

magnetic fields as a function of the combined gate voltage, measured along
the red line in (B). The energy of the ABSs is strongly dependent on gate
voltages. (G to I) B-Vsd sweeps at different gate voltages, corresponding to
the triangle, square, and circle in (C) to (F), respectively. Depending on gate
voltages, the ABSs in the wire showdifferentmagnetic field evolution, from a
splitting behavior (G) to nonsplitting behavior (I). Arrows in (G) to (I) indicate
the first excited ABSs, and d in (H) is defined as the residual gap—the energy
of the first excited state around topological phase transition, caused by the
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Fig. 4. Stable zero-energy states measured on other devices. (A) SEM
images of device 2, in which local bottom gates are used. The hybrid wire
section is 1.5 mm long. (D) SEM image of device 3, with the hybrid wire
section length around 2 mm long. (B and E) Subgap states evolution in
magnetic field, measured on device 2 and device 3, respectively. In both
plots, stable zero-energy states arising from a pair of ABSs can be seen.

(B) is measured at Vg1 = –600 mV, Vg2 = –1840 mV, and Vg3 = 5 V, and (E) is
measured at Vg1 = 3720 mV, Vg2 = Vg3 = –5850 mV, and Vbg = –8 V. (C and
F) Gate voltage–dependence measurements of subgap states for device 2
and device 3, respectively. Both measurements are taken by following the
isopotential lines of the hybrid wires in one of their end-dot Coulomb
blockade valleys.
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Figure 3 | Majorana peak splitting. a, Super-gate dependence of the quantized ZBP in device 
A at 0.9 T. As the super-gate increases the chemical potential, the ZBP-height is nearly 
quantized before it splits. The tunnel-gate voltage is adjusted simultaneously when sweeping 
the super-gate voltage, to compensate for the cross coupling and keep the transmission roughly 
constant. Lower panel shows the zero-bias line-cut, and the right panels show vertical line-cuts 
at gate voltages indicated by the corresponding colour bars. Switches in the colour maps are 
due to charge jumps in the gate dielectric. b, Oscillatory behaviour of the ZBP splitting, where 
the two black arrows point at the peak splitting regions. c, Simulation also shows oscillatory 
splitting as a function of chemical potential. The Zeeman field is fixed at VZ = 1 meV.       
 14 
 

 

Figure 3 | Majorana peak splitting. a, Super-gate dependence of the quantized ZBP in device 
A at 0.9 T. As the super-gate increases the chemical potential, the ZBP-height is nearly 
quantized before it splits. The tunnel-gate voltage is adjusted simultaneously when sweeping 
the super-gate voltage, to compensate for the cross coupling and keep the transmission roughly 
constant. Lower panel shows the zero-bias line-cut, and the right panels show vertical line-cuts 
at gate voltages indicated by the corresponding colour bars. Switches in the colour maps are 
due to charge jumps in the gate dielectric. b, Oscillatory behaviour of the ZBP splitting, where 
the two black arrows point at the peak splitting regions. c, Simulation also shows oscillatory 
splitting as a function of chemical potential. The Zeeman field is fixed at VZ = 1 meV.       
 

• Zero-energy	pinned	regions
• Non-topological	energy	levels	
approaching	zero	energy

Theory-
experiment
disagreement

H.Zhang et	al.	arXiv:1710.10701	(2017)



z
x

!a !SC

! Wρ(x)

VZ
y

Normal
Lead	

Substrate

!M

8	/	12Samuel	Díaz Escribano

2.	Results
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Figure 1 | Quantized Majorana zero-bias peak. a, False-colour scanning electron micrograph 
of device A (upper panel) and its schematics (lower panel). Side gates and contacts are Cr/Au 
(10 nm/100 nm). The Al shell thickness is ~10 nm. The substrate is p-doped Si, acting as a 
global back-gate, covered by 285 nm SiO2. The two tunnel-gates are shorted externally as well 
as the two super-gates. The scale bar is 500 nm. b, Magnetic field dependence of the quantized 
ZBP in device A with the zero-bias line-cut in the lower panel. Magnetic field direction is aligned 
with the nanowire axis for all measurements. Super- (tunnel-) gate voltage is fixed at -6.5 V (-7.7 
V), while the back-gate is kept grounded. Temperature is 20 mK unless specified. c, 
Comparison between experiment and theory. Left (right) panel shows the vertical line-cuts from 
b (d) at 0 T and 0.88 T (1.07 meV). d, Majorana simulation of device A, assuming chemical 
potential μ = 0.3 meV, tunnel barrier length (LTG = 10 nm), with height ETG = 8 meV, and the 
superconductor-semiconductor coupling is 0.6 meV. See Methods for further information. A 
small dissipation broadening term (~30 mK) is introduced for all simulations to account for the 
averaging effect from finite temperature and small lock-in excitation voltage (8 μV) 
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Bound	charges	electrostatic	potentialEnergy	spectrum

The	potential	is	repulsive	at	the	nanowire	middle,	
while	it	is	attractive	at	the	nanowire	edges
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2.	Results

Because	of	the	repulsive	part,	charge	enters	into	the	
nanowire	progressively	(instead	of	by	jumps)
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2.	Results

It	freezes	the	Majorana	modes,	leading	to	zero	energy	
pinned	regions
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Bound	charges	electrostatic	potentialEnergy	spectrum

It	builds	two	Quantum	Dots	at	each	end	of	the	
nanowire	which	hybridize	with	the	Majoranas
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3.	Conclusions

• The interaction with the electrostatic environment of the nanowire
could explain some discrepancies between theory and experiments.

• The repulsive part of the electrostatic interaction makes Majoranas
more stable under electrostatic and magnetic perturbations.

• Quantum dots are naturally built at the edges of these nanowires due
to the attractive interaction created by the leads.

• Both features could help control Majorana qubits, which can be used
as building blocks in quantum computation.
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A.	Electron-Electron	interaction	inside	the	nanowire
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†
�

i

⇤ ⌘ �x ⌦ IN⇥N ⌦ I2⇥2

V̂

HFB =
1

2
č
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� č�

1

V

TF (x0) =

p
⇡

4⇡✏✏0R
e

x02/R2�|x0|/�TFErfc

✓
|x0|
R

◆

�TF = 10nm

V̂eff = V↵�

h⌦
č
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č

†
↵č�
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č

†
� č↵+
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č↵č� � hč↵č�i č†↵č
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†
↵č↵V
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†
� č�
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• Electron-Electron	interaction	in	the	Thomas-Fermi	limit:
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č

†
↵č
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†
↵č↵V
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A.	Electron-Electron	interaction	inside	the	nanowire

Extrinsic	interactions HF	and	extrinsic	interactions

Electrostatic	potential

The	bound	charges	electrostatic	potential	is	(a	little	bit)	flatter
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č

†
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↵č

†
�

E
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A.	Electron-Electron	interaction	inside	the	nanowire

No	e-e	interactions Hartree-Fock e-e	interactions

Energy	spectrum

HF	interaction	changes	the	chemical	potential	and	the	Zeeman	splitting
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A.	Electron-Electron	interaction	inside	the	nanowire

Hartree-Fock-Bogoliubov e-e	interactions Hartree-Fock e-e	interactions

Energy	spectrum

HFB	interaction	changes	also	the	induced	superconductor	gap

V

TF (x0) =

p
⇡

4⇡✏✏0R
e

x02/R2�|x0|/�TFErfc

✓
|x0|
R

◆

�TF = 10nm

V̂eff = V↵�

h⌦
č
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č

†
� č�

E
č
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↵č↵ +

⌦
č
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B.	Quantum	Dots	at	the	nanowire	edges

Fixed	electrostatic	potential	model	

QD-Majorana nanowire	model
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attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
0
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

8

attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because
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attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because
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attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

8

attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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ĤQD = d†� (✏QD�
0

+ VZ�z) d� + Un"n#
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

8

attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

8

attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
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potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

8

attractive one. Nevertheless, parity crossings are never
destroyed, but instead of pinning, there are anti-pinnings
at these high permittivities. The width of the nanowire
also plays a role in the pinning. Fig.(8d) shows the in-
compressible regions along the VZ � ⇠, where ⇠ is the as-
pect ratio of the nanowire. When the distance between
the SC shell and the opposite side is large (large ⇠), the
pinning is bigger. This is because the SC shell is far-
ther from the center of the nanowire, so the attractive
interaction is weaker.

C. Model for Unexpected Band Behavior

Fig.(6b) exhibits unexpected bands behavior: two
(blue) sub-bands approaches to the MZM energies after
the topological transition. These energies do not follow
the energy bands behavior for a topological nanowire saw
at sec.I without interactions. That means these states
are localized in the nanowire at some region outside the
topological phase. Because the leads creates a strength
attractive interaction between the nanowire electrons and
the bound charges placed at the nanowire endings, the
difference between the electrostatic potential at the cen-
ter of the nanowire and the edges is very high, as it can
be seen in fig.(6c). It have been also shown that electro-
static potential renormalized the beginning of the topo-
logical phase (eq.(7)), so the edges of the nanowire come
into this non-trivial phase much later than the nanowire
middle does. Hence, these unexpected bands behavior
have to come from this outer region.

These bands behavior have also been reported in some
experimental works[7, 22], as well as similar features
have been studied in some hetero-structures devices like
quantum-dots (QD) coupled to Majorana nanowires[23,
24]. Based on this work[23], this hetero-structure has
been studied using the next hamiltonian:

ĤQD�w = ĤQD⌧z + Ĥhopping⌧z + Ĥ
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where HQD is the QD hamiltonian, Hhop describes
the hopping between the QDs and the nanowire, ✏QD

is the single-spin-degenerate-energy-level for the QD,
U the electron-electron interaction in the QD, and
tQD the hopping energy between the nanowire elec-
trons (given by {c†, c}) and the QD electrons (given by
�

d†, d
 

). The interaction Un"n# can be also described
with a self-consistent mean-field approach Un"n# '
U (hn"in# + n" hn#i+ hn"n#i), so this problem can be
solved using the same numeric methods. Energies versus
Zeeman splitting are shown in fig.(9b). Two energy bands
(blue) approaches to zero energy. These energy bands are
the QD energy levels, which are not equal to ✏QD because
they are hybridized with the nanowire. When the mag-
netic field is applied these energy levels split due to the
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Figure 9: (a) up: sketch of the QD-nanowire system;
down: sketch of the fixed non-homogenous chemical

potential model. We note Vin = �µfixed. (b) Energies
versus Zeeman splitting for the QD model. It has been
used: L = 1µm, µ = 0.5meV, U = �3meV, tQD = t,

and ✏QD = 19meV. (c) The same for the fixed
non-homogenous chemical potential model. (d) shows

its total charge. Blue zone is the region where the QDB
approaches to zero energy. It has been used: L = 1µm,

µ = 0.5meV, �µ = �3meV and Lµ = 140nm.

Zeeman splitting. But, instead of crossing at zero en-
ergy, they are repealed due to the topological protection
of the MZM. Since there is no SC pairing in the QDs,
they do not follow the remaining band behavior either.
Comparing fig.(6b) and fig.(9b), we have conclude that
these unexpected bands behavior follow this QD band
behavior (QDB).

However, strictly speaking this is not true. There are
some differences between both systems: there is SC pair-
ing inside the outer regions of the nanowire, but it is
not the case for the QDs; and the repulsive interaction
U inside the QDs, should be attractive in the outer Ma-
jorana regions due to the attractive electrostatic poten-
tial. Some induced SC pairing is also expected inside
the QD due to their hybridization with the nanowire, so
this effect may not play a role. Nevertheless, an attrac-
tive interaction U make no sense for a QD. One might
think that the electron-electron interaction between the
nanowire electrons could destroy this attractive interac-
tion. This is studied in Appendix C, revealing that this
interaction is not enough high to destroy these features.

For this reason a new simplified model is needed
in order to understand this QDB behavior. Because

B.	Quantum	Dots	at	the	nanowire	edges
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QD-Majorana nanowire	model
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B.	Quantum	Dots	at	the	nanowire	edges
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QD-Majorana nanowire	model
Energy	spectrum	(1	QD)

There	are	four	QDELs	because	there	are	two	QDs
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B.	Quantum	Dots	at	the	nanowire	edges



C1	/	1Samuel	Díaz Escribano

C.	Majorana modes	in	quantum	computation
A Majorana qubit is:

• A doubly degenerate ground state, far enough
from the rest of the energy levels:
− Sub-gap states Majorana Zero Energy

Modesà Pinning
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C.	Majorana modes	in	quantum	computation
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C.Nayak et	al.	Rev.	Mod.	Phys.	80	(2008)

A Majorana qubit is:

• A doubly degenerate ground state, far enough
from the rest of the energy levels:
− Sub-gap states Majorana Zero Energy

Modesà Pinning

• Robust against sources of decoherence:
− Non-local wave-functionà Quantum Dots
− Non-Abelian statistics (non-trivial topology)
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D.	Pinning	without	the	leads
Pinned	regions	for	different	environments

Pinning	(non-interacting) Pinning	(interacting)

Pinning	is	general	for	all	chemical	potentials
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D.	Pinning	without	the	leads
Pinned	regions	for	different	environments

Different	SC	permittivities Different	nanowire	radius

Pinning	is	not	general	for	all	kind	of	environments
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E.	Equations

Image	charges:Interaction	ignoring	the	leads:

Interaction	including	the	leads:

points, whose potential is given by:91

92

V

b

(x) =
1

4pee0

2

4
•

Â
n,m=1

0

@

⇣
q

(n)
1 +q

(n)
3

⌘⇣
q

(m)
2 +q

(m)
4

⌘

q
x

2 +(2nR1)
2 +(2mR2)

2

1

A+93

+
•

Â
n=1

0

@ q

(n)
1 +q

(n)
3q

x

2 +(2nR1)
2
+

q

(n)
2 +q

(n)
4q

x

2 +(2nR2)
2

1

A

3

5 , (8)94

95

where:96

8
>>>>>>><

>>>>>>>:

q

(n+1)
1 = k1q

(n)
3 q

(n+1)
2 = k2q

(n)
4

q

(n+1)
3 = k3q

(n)
1 q

(n+1)
4 = k4q

(n)
2

q

(0)
a = 1 8a = {1,2,3,4} .

(9)97

If the section is square (R1 = R2), then the kernel can be rewritten more compact as follows:98
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Because just one charge is required in the corners in order to satisfy two boundary conditions,100

number of charges increase in each n image method step as V

(n)
b

⇠ 4n (square perimeter), while101

potential decreases as V
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⇠ kn/n. Then, the infinite summation of the kernel is proportional to102

V
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⇠ k/(1�k), so the convergence of the kernel is ensured as well.103

Section III: The Full-Model104

Finally, the full system of Fig. (1) of the main text is solved: now there are another two facets in105

the x-direction. We assume that the nanowire has a square section of radius R, and the charge q106

is placed at the coordinate origin at the same distance R from each metal (facet) lead M1 and M2.107

Following the same procedure, we obtain:108
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If the charge q is placed at an arbitrary position x

0 inside the nanowire, and the M1 metal interface116

is placed at x = 0 and the M2 interface is placed at x = L (the length of te wire is L); then the kernel117

of the interaction is given by:118
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123

If L is enough large compare to 2R, just lowest order of the image charges q

M

i

terms will contribute124

to the potential, so the number of charges increase just as V
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⇠ 12n, and then, the system follows125

the same convergence conditions seen in the previous section. If this is not true (L ⇠ 2R), then the126
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F.	Experiments

Experimental	set	up

normal gate

barrier gate

super gateB
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Conductance	through	the	nanowire
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F.	Experiments

Experimental	set	up
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F.	Experiments
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FIG. S7. Snapshots of the bias and gate dependence for a range of magnetic fields indicated in the upper corner of each panel.
A nonlinear colorscale is used.
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