Effect of the Electrostatic Environment in Majorana Nanowires

Samuel Díaz Escribano

Universidad Autónoma de Madrid (UAM) December 15, 2017

Samuel Díaz Escribano Electrostatic Environment in Majorana Nanowires

- a) Minimal theory of Majorana nanowiresb) Experimental status and motivation
- 2. Results
 - a) Model of the electrostatic environmentb) Results
- 3. Conclusions

• A Majorana particle is a fermion that is its own antiparticle. They correspond to solutions of the Dirac equation with $\gamma = \gamma^{\dagger}$.

- A Majorana particle is a fermion that is its own antiparticle. They correspond to solutions of the Dirac equation with $\gamma = \gamma^{\dagger}$.
- Superconductivity violates charge conservation.

- A Majorana particle is a fermion that is its own antiparticle. They correspond to solutions of the Dirac equation with $\gamma = \gamma^{\dagger}$.
- Superconductivity violates charge conservation.
- In spinless p-wave superconductors, Bogoliubov quasi-particles can satisfy $\gamma=\gamma^{\dagger}.$

- A Majorana particle is a fermion that is its own antiparticle. They correspond to solutions of the Dirac equation with $\gamma = \gamma^{\dagger}$.
- Superconductivity violates charge conservation.
- In spinless p-wave superconductors, Bogoliubov quasi-particles can satisfy $\gamma = \gamma^{\dagger}$.
- Type p superconductivity is induced in semiconductor nanowires with:
 - proximity effect to type s superconductors
 - high spin-orbit coupling
 - And applying an external magnetic field.

$$\hat{H}_0 = \left[\left(\hbar^2 k_x^2 / 2m - \mu \right) \sigma_0 \right] \tau_z$$

• High spin-orbit coupling (Rashba effect) α

$$\mathbf{y} \not \xrightarrow{\mathbf{z}} \mathbf{x} \quad \longleftarrow \quad \mathbf{k}_x \quad \bigcirc$$

$$\hat{H}_0 = \left[\left(\hbar^2 k_x^2 / 2m - \mu \right) \sigma_0 + \alpha \sigma_y k_x \right] \tau_z$$

- High spin-orbit coupling (Rashba effect) α
- External magnetic field (Zeeman splitting) $V_{\!Z}$

$$\hat{H}_0 = \left[\left(\hbar^2 k_x^2 / 2m - \mu \right) \sigma_0 + \alpha \sigma_y k_x + V_Z \sigma_x \right] \tau_z$$

- High spin-orbit coupling (Rashba effect) α
- External magnetic field (Zeeman splitting) $V_{\!Z}$

Superconductor

 α

- Induced superconductivity Δ

$$\hat{H}_0 = \left[\left(\hbar^2 k_x^2 / 2m - \mu \right) \sigma_0 + \alpha \sigma_y k_x + V_Z \sigma_x \right] \tau_z + \Delta \sigma_y \tau_y$$

B

 k_x

When the gap closes the nanowire undergoes a topological phase transition

Finite long nanowire

Lowest energy eigenfunctions

Energy spectrum

Majoranas emerge as zero energy modes at the edges of the nanowire

Finite short nanowire

Energy spectrum

Lowest energy eigenfunctions

Finite short nanowire

Energy spectrum

Total charge

In each parity crossing the total charge increases by an amount Q_M

Experimental measurements: conductance through a Majorana Nanowire

Electrostatic environment

Experimental set up of Deng *et al.* Science **354** (2016)

Model of the electrostatic environment

- InSb Nanowire: $\epsilon = 17,7$ Vacuum: $\epsilon_a \simeq 1$ SC shell: $\epsilon_{SC} \simeq 100$
- SiO₂ substrate: $\epsilon_d = 3.9$ Normal leads: $\epsilon_M \to \infty$ Nanowire $\begin{bmatrix} L = 1 \mu m \\ R = 50 nm \end{bmatrix}$

Electrostatic environment

Experimental set up of Deng *et al.* Science **354** (2016)

Model of the electrostatic environment

$$\hat{H} = \hat{H}_0 + e\phi_b(x) \sigma_0 \tau_z \longrightarrow \phi_b(x) = \int dx' V_b(x, x') \langle \hat{\rho}(x') \rangle$$

Results

Bound charges electrostatic potential

Energy spectrum

Repulsive interaction

Because of the repulsive part, charge enters into the nanowire progressively (instead of by jumps)

Repulsive interaction

It freezes the Majorana modes, leading to zero energy pinned regions

Atractive interaction

Topological phase along the nanowire

Bound charges electrostatic potential

11/12

Because of the attractive part, the nanowire undergoes the topological phase by regions

Atractive interaction

Energy spectrum

Bound charges electrostatic potential

11/12

It builds two Quantum Dots at each end of the nanowire which hybridize with the Majoranas

- The interaction with the electrostatic environment of the nanowire could explain some discrepancies between theory and experiments.
- The repulsive part of the electrostatic interaction makes Majoranas more stable under electrostatic and magnetic perturbations.
- Quantum dots are naturally built at the edges of these nanowires due to the attractive interaction created by the leads.
- Both features could help control Majorana qubits, which can be used as building blocks in quantum computation.

Supplementary material for questions

Samuel Díaz Escribano Supplementary material for questions

• Electron-Electron interaction in the Thomas-Fermi limit:

$$\hat{V}_{e-e} = \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}V^{TF}_{\alpha\beta}\check{c}^{\dagger}_{\beta}\check{c}_{\beta} \longrightarrow V^{TF}(x') = \frac{\sqrt{\pi}}{4\pi\epsilon\epsilon_{0}R}e^{x'^{2}/R^{2}-|x'|/\lambda_{TF}}\operatorname{Erfc}\left(\frac{|x'|}{R}\right)$$

$$Hartree \qquad Fock$$
• Wick's theorem: $\hat{V}_{eff} = V^{TF}_{\alpha\beta}\left[\langle\check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}\rangle\check{c}^{\dagger}_{\beta}\check{c}_{\beta} + \langle\check{c}^{\dagger}_{\beta}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\alpha} + \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\alpha} + \langle\check{c}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta} - \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}^{\dagger}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}\rangle\check{c}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}, \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \langle\check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\beta}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}\check{c}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}- \check{c}^{\dagger}_{\alpha}$

Electrostatic potential

HF and extrinsic interactions

 $\lambda_{TF} = 10$ nm

The bound charges electrostatic potential is (a little bit) flatter

Energy spectrum

Features (pinning and QDELs) are not destroyed

Energy spectrum

Hartree-Fock e-e interactions

No e-e interactions

HF interaction changes the chemical potential and the Zeeman splitting

Energy spectrum

Hartree-Fock e-e interactions

Hartree-Fock-Bogoliubov e-e interactions

HFB interaction changes also the induced superconductor gap

QD-Majorana nanowire model

Fixed electrostatic potential model

QD-Majorana nanowire model

$$\begin{aligned} \hat{H}_{QD-w} &= \hat{H}_{QD}\tau_z + \hat{H}_{hopping}\tau_z + \hat{H}_0 \rightarrow & U = 3 \text{meV} \\ \rightarrow \begin{cases} \hat{H}_{QD} &= d_{\sigma}^{\dagger} \left(\epsilon_{QD}\sigma_0 + V_Z\sigma_z\right) d_{\sigma} + Un_{\uparrow}n_{\downarrow} & t_{QD} = t \\ \hat{H}_{hop} &= t_{QD} \left(c_{0\sigma}d_{\sigma}^{\dagger} + c_{N+1,\sigma}d_{\sigma}^{\dagger} + \text{h.c.}\right) & \epsilon_{QD} = 19 \text{meV} \end{aligned}$$

QD-Majorana nanowire model

The energy levels of the QDs anticross MZM energies

QD-Majorana nanowire model

There are four QDELs because there are two QDs

C. Majorana modes in quantum computation

A Majorana qubit is:

- A doubly degenerate ground state, far enough from the rest of the energy levels:
 - − Sub-gap states Majorana Zero Energy
 Modes → Pinning

C. Majorana modes in quantum computation

A Majorana qubit is:

- A doubly degenerate ground state, far enough from the rest of the energy levels:
 - − Sub-gap states Majorana Zero Energy
 Modes → Pinning

- Robust against sources of decoherence:
 - Non-local wave-function \rightarrow Quantum Dots
 - Non-Abelian statistics (non-trivial topology)

C.Nayak et al. Rev. Mod. Phys. 80 (2008)

D. Pinning without the leads

Pinned regions for different environments

Pinning (non-interacting)

Pinning (interacting)

Pinning is general for all chemical potentials

D. Pinning without the leads

Pinned regions for different environments

Different SC permittivities

Different nanowire radius

Pinning is not general for all kind of environments

E. Equations

Interaction ignoring the leads:

$$V_{b}(x) = \frac{1}{4\pi\varepsilon\varepsilon_{0}}\sum_{n,m=0}^{\infty} \left(\frac{\left(q_{1}^{(n)} + q_{3}^{(n)} - \delta_{n,0}\right)\left(q_{2}^{(m)} + q_{4}^{(m)} - \delta_{m,0}\right)}{\sqrt{x^{2} + (2nR)^{2} + (2mR)^{2}}}\right)(1 - \delta_{n+m,0})$$

Image charges:

$$q_{\beta,n+1} = \kappa_{\beta}q_{\alpha,n}$$

$$\begin{cases} q_{a,n+1} = \kappa_a q_{d,n} & q_{d,n+1} = \kappa_d q_{a,n} \\ q_{c,m+1} = \kappa_c q_{b,m} & q_{b,m+1} = \kappa_b q_{c,m} \\ q_{\alpha,0} = 1 \leftarrow \forall \alpha = \{a, b, c, d\} \end{cases}$$

Interaction including the leads:

$$V_{b}(x) = \frac{1}{4\pi\varepsilon\varepsilon_{0}} \sum_{n,m,k=0}^{\infty} \left(\frac{\left(q_{1}^{(n)} + q_{3}^{(n)} - \delta_{n,0}\right) \left(q_{2}^{(m)} + q_{4}^{(m)} - \delta_{m,0}\right) q_{M_{1}}^{(k)}}{\sqrt{\left(x - (-1)^{k} \left(2^{\text{floor}\left(\frac{k}{2}+1\right)}L - 2L + x'\right)\right)^{2} + (2nR)^{2} + (2mR)^{2}}} + \frac{\left(q_{1}^{(n)} + q_{3}^{(n)} - \delta_{n,0}\right) \left(q_{2}^{(m)} + q_{4}^{(m)} - \delta_{m,0}\right) \left(q_{M_{2}}^{(k)} - \delta_{k,0}\right)}{\sqrt{\left(x + (-1)^{k} \left(2^{\text{floor}\left(\frac{k+1}{2}\right)}L - x'\right)\right)^{2} + (2nR)^{2} + (2mR)^{2}}}\right) \left(1 - \delta_{n+m+k,0}\right)}$$

F. Experiments

Ballistic Majorana nanowire devices

Hao Zhang,^{1,2,*} Önder Gül,^{1,2,*} Sonia Conesa-Boj,^{1,2,3} Kun Zuo,^{1,2} Vincent Mourik,^{1,2} Folkert K. de Vries,^{1,2} Jasper van Veen,^{1,2} David J. van Woerkom,^{1,2} Michał P. Nowak,^{1,2} Michael Wimmer,^{1,2} Diana Car,³ Sébastien Plissard,^{2,3} Erik P. A. M. Bakkers,^{1,2,3} Marina Quintero-Pérez,^{1,4} Srijit Goswami,^{1,2} Kenji Watanabe,⁵ Takashi Taniguchi,⁵ and Leo P. Kouwenhoven^{1,2,†}

F. Experiments

Scalable Majorana Devices

H. J. Suominen,¹ M. Kjaergaard,¹ A. R. Hamilton,² J. Shabani,³,^{*} C. J. Palmstrøm,^{3,4,5} C. M. Marcus,¹ and F. Nichele¹,[†]

Experimental set up

F. Experiments

V_{sd} (mV)

Scalable Majorana Devices

H. J. Suominen,¹ M. Kjaergaard,¹ A. R. Hamilton,² J. Shabani,³,^{*} C. J. Palmstrøm,^{3,4,5} C. M. Marcus,¹ and F. Nichele¹,[†]

Conductance through the nanowire

 $V_{\rm G}~({
m V})$