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TFM: Effect of the Electrostatic Environment in Majorana Nanowires

Samuel Díaz Escribano

Majoranas modes are exotic quasi-particles which have become a hot topic in condensed matter
physics over the last few years. They emerge in non-trivial topological phases as non-local zero en-
ergy states at the edges of some specific materials, like quasi-one dimensional Rashba nanowires. The
non-local nature of their wave function together with their non-Abelian statistics under exchange
make them promising fault-tolerant qubits for quantum computation. However, spectroscopic mea-
surements in real experiments exhibit some features that cannot be explained by simple theoretical
models, such zero-energy pinning of the lowest lying modes or quantum dot like behavior. In this
work we show that these features can be explained by taking into account the interaction of elec-
trons in the nanowire with the bound charges that arise in the electrostatic environment. They
make Majorana states more stable under magnetic and electrostatic perturbations, and they may
also lead to the formation of quantum dots at the edges of the nanowires, which can be used as
powerful spectroscopic tools to quantify the degree of Majorana non-locality.

I. INTRODUCTION

In 1930 Paul Dirac[1] showed through the Dirac equa-
tion that there are four solutions for half-integer spin
fermions: two solutions with the same energy (one for
each spin), and another two solutions with the opposite
charge and (negative) energy, called antiparticles. How-
ever, ten years later, Majorana[2] questioned the need to
introduce a distinct antiparticle for each particle. He sug-
gested the existence of a new kind of particles which con-
stitute their own antiparticle, and therefore, they have
to exist with zero energy and no charge. For the mo-
ment, Majorana’s particles have not been discovered as
elementary particles in nature[3].

Despite this fact, solid state physicists have worked
to find these particles as quasi-particles excitations in
materials[4, 5]. The most promising devices where they
could been found are Majorana nanowires[6–10]: one-
dimensional (1D) materials in which the so-called topo-
logical superconductivity (TS) is induced. It is a mixture
between a s-wave superconductor (SC) and some heli-
cal half-metal, which is a metal where each propagation
direction has a single-degenerate carrier with opposite
spin. A helical half-metal regime can been created by
applying a large enough magnetic field to a semiconduc-
tor nanowire with a large spin-orbit coupling (Rashba
effect). Furthermore, it has been recently shown that su-
perconductivity can be induced by proximity effect into
these structures[11, 12]. Hence, as theory predicts, the
system could enter the TS phase by an appropriate tun-
ing of the parameters like chemical potential and Zee-
man field. Then, two majoranas quasi-particles appear
at the nanowire edges at zero energy with a non-trivial
topology[13]. This nanowire state is called Majorana
nanowire.

Their zero-energy, non-local character of their wave
function and their non-trivial topology make them a very
suitable qubit for quantum computation[14, 15]: Majo-
ranas can be combined in order to create a non-local
coherent quantum state useful as a qubit for quantum
computation; and because of their non-trivial topology

character they are topologically protected from decoher-
ence by the environment.

Despite the efforts during the last years to develop
a theory which explains the behavior of the Majorana
nanowires, some discrepancies between theory and ex-
periments are still present. The aim of our work is to
explain some of these observed differences, such as zero
energy anomalies. In order to do that, we are going to
consider the interaction between the wire and the electro-
static environment [16, 17]. It has been recently shown
that bound charges in the surrounding medium help re-
taining the zero energy characteristics of Majoranas un-
der small magnetic and electrostatic perturbations[16].
Understanding it may help to exploit this feature, which
can be a very powerful tool for quantum computation.

In the next sub-sections of the introduction, we present
the standard theory for these 1D Majorana nanowires
(Sect.I A) and the state of the art of the experimental
status (Sect.I B), showing the discrepancies with the pre-
vious theory. In Sect.II we propose a physical mecha-
nism that should take place in realistic experiments and
that accounts for the experimental findings at odds with
previous theory. Sect.IIA and Sect.II B are devoted to
understand some features that our results exhibit: pin-
ning (Sec.II A), and unexpected energy levels behavior
(Sect.II B). Finally the conclusions of our work are pre-
sented in Sect.III. Additionally, Appendix A explains the
numerical methods used for our simulations and Ap-
pendix B obtains the electrostatic interaction between
the environment and the nanowire.

A. Standard Theory of Majorana Nanowire

The main ingredient to build these kinds of quasi-
particles is superconductivity, which involves superposi-
tions of electrons and holes, and violates charge conserva-
tion. Excitations of a conventional s-wave SC (described
by the BCS theory[18]), take the form γ = uc↑ + vc†↓,
where u and v are the electron and hole components, and
c†, c are the electron creation and annihilation operators.
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Figure 1. Top view (a) and partial side view (b) of the sys-
tem considered in this work: a semiconductor nanowire with
dielectric permittivity ε, length L, and section Ry × Rz, is
placed over a substrate (εd), and contacted between two nor-
mal metal leads (εM →∞). One facet is covered by a SC shell
(εSC), and it is surrounded by air otherwise. A magnetic field
is applied along the x-axis. We model the nanowire charge
density ρ (x) as a 1D charge density at its center along the
x-axis. Potential barrier gates (brown) are used to measure
the differential conductance.

We note that even if u = v∗, a γ excitation is different
from γ† = v∗c↓ + u∗c†↑ = uc↓ + vc†↑ due to their spin.
Hence, the aim is to find or create a SC which involves
superpositions of electrons and holes with the same spin,
so that excitations take the form:

γ = uc†σ + vcσ. (1)

These operators satisfy γ† = γ, and thereby γ†γ = γ2 =
1 and {γi, γj} = 2δij . As a result of this last condi-
tion, Majoranas in condensed matter physics could not
be conventional fermions (they do not obey Fermi-Dirac
statistic[14]). This is why they are generally called Ma-
jorana zero modes (MZM) in solid state physics, instead
of Majorana fermions.

In order to achieve Eq.(1) one method is mainly used
for one-dimensional (1D) materials: inducing supercon-
ductivity and applying a magnetic field to a semicon-
ductor with a large spin-orbit coupling (Rashba effect).
S-wave SC can be induced to a semiconductor with a
smaller pairing amplitude[11, 12] by proximity effect. P-
wave component can also arise if the electrons of the
semiconductor feel Rashba interaction, since it couples
the electron spin and momentum[19]. If a (large enough)
magnetic field is also applied, then the Zeeman splitting
can fully spin-polarize the system, reaching a topological
phase with a dominant p-wave superconductivity where
MZM can emerge[4].

The most essential aspects of this system can be
described using the following Hamiltonian written in
Nambu representation:

Ĥ0 =
[(
~2k2

x/2m− µ
)
σ0 + ασykx + VZσx

]
τz + ∆σyτy,

where k is the electron momentum and m its effective
mass, µ is the chemical potential, α the spin-orbit cou-
pling amplitude, VZ the Zeeman splitting, ∆ is the in-
duced SC pairing amplitude[27], and {σx, σy, σz} the
Pauli matrices in spin space, and {τx, τy, τz} the Pauli
matrices in electron-hole Nambu space. Matrices σ0 and
τ0 are their corresponding identities. A scheme of the
system, as well as the chosen axis, are shown in Fig.(1).

The bulk dispersion relation (for an infinitely long
nanowire) of this model is given by:

E2
± =

(
~2k2

2m
− µ

)2

+ (αk)
2

+ V 2
z + ∆2±

± 2

√
(∆Vz)

2
+
(

(αk)
2

+ V 2
z

)(~2k2

2m
− µ

)2

. (2)

Fig.(2a) shows the positive energies when some parame-
ters are zero. When only the spin-orbit coupling plays a
role (VZ = 0 and ∆ = 0), the parabolic dispersion rela-
tion for a free electron is splitted into two (blue and red)
parabolas. Each parabola has a different spin orientation
since it depends on its momentum. If Zeeman splitting
is also considered (∆ = 0), the two parabolas get splitted
in energies (black curves): the one whose spin is aligned
with the magnetic field, decreases its energy. Now, the
chemical potential (dot line) can be fixed between the
two curves, in order to reach an effective spinless phase.
Finally, SC (gray line) pair electrons (and holes) with
same spin. Nevertheless, owing to the competition be-
tween the Rashba and the Zeeman effect, the system will
be just partially polarized in the remaining lower band.

Fig.(2b-d) shows Eq.(2) for different magnetic fields.
As it is increased, the central gap closes at:

E± = 0→ V cZ ≡
√

∆2 + µ2. (3)

At this point the system is spin-polarized, reaching a
different topological phase. The change in the sys-
tem topology is explained in Ref.[4]: a topological in-
variant associated to the energy bands can be defined.
This parameter does not change under smooth pertur-
bations, except if the topology changes. The topology
of the system changes from a trivial state to a Z2 topo-
logical order (class D topological insulator) above V cZ .
This non-trivial topology provides anyon character to the
MZM[14]. Meanwhile, two midgaps keeps almost at the
same energy, placed at (for µ = 0):

∂E2
±

∂k

∣∣∣∣
kF

= 0→ kF =

√
2k2
SO +

√
4k4
SO + k2

Z , (4)

where kSO = mα/~2 and kZ =
√

2VZm/~. Fig.(2b-d)
also shows that the larger the magnetic field is, the larger
the difference between the energies E (k = 0) ≡ ∆± '
∆± (Vz + µ) are, so the bigger is the energy range where
the chemical potential could be fixed in order to reach an
effective spinless phase. However, the magnetic field has
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Figure 2. (a) Bulk dispersion relation of an infinite Rashba nanowire in the absence (blue and red curves) and in the presence
(black curves) of a magnetic field. When the chemical potential µ (dotted line) lies within the colored area, an effective spinless
phase for the nanowire is reached. Superconductivity (gray line) can pair electrons with same spin then. Arrows indicate the
electron spin direction, which follows the magnetic field except for the spin canting given by the spin-orbit interaction term.
(b-d) Nambu representation of the dispersion relation of the same wire in the presence of an induced superconducting pairing
∆, for different magnetic fields: (b) before the topological phase transition VZ = 0.5V c

Z ; (c) at the gap closing VZ = V c
Z ; (d)

after the topological transition VZ = 1.5V c
Z , where V c

Z ≡
√

∆2 + µ2. We have defined ∆± ≡ ∆± (Vz + µ).
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Figure 3. Eigenvalues and eigenstates for a long (L = 5µm�
λF ) nanowire with µ = 0meV. (a) Energies versus the Zee-
man splitting. The two red modes are the MZM; (b) wave
functions of the two lowest energy modes at VZ = V c

Z . For
a long nanowire, the Majorana wave functions are similar for
any VZ > V c

Z , whereas the wave function of the higher energy
levels (black) varies strongly. We represent in blue the left
Majorana γLeft, and in the red the right one γRight.

to be smaller than the critical magnetic field of the SC.
Otherwise, superconductivity would be destroyed. Be-
cause Zeeman splitting takes the form VZ = µBgB/2,
where µB is the Bohr’s magneton, g the Landé g-factor,
and B the magnetic field; then it is not necessary to apply
a high magnetic field if g is large enough, as it happens
in some semiconductor materials[20].

We want to study now realistic finite nanowires. In
order to do that, the nanowire has been discretized using
a tight-binding model (see Appendix A for more detail).
Fig.(3a) shows the energies versus the Zeeman splitting
for a very long nanowire (when L� λF = 2π/kF ), which
in practice can be still considered as infinite. At zero
magnetic field, there is a gap between (−∆,∆) due to
the induced superconductivity. All energy levels are spin-
degenerate. When the magnetic field is increased, the
energy levels split due to the Zeeman effect: those whose
spin is aligned with the magnetic field go down in energy.
At VZ = V cZ the gap closes at zero energy, keeping two
states (red) at this zero energy. Because these zero modes
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Figure 4. Energy spectrum (a) and total charge (b) versus
the Zeeman splitting for a short (L = 1µm ∼ λF ) nanowire
with µ = 0meV. Vertical blue lines indicate the position of
the parity crossings. Majorana wave function at the parity-
crossing (c) and at VZ = 3V c

Z (d), both marked by dots and
squares in (a). Each dot/square color in (a) corresponds to
each eigenstate color in (c) and (d).

are topologically protected, no energy levels can cross
them. Hence, a gap between the remaining bands and
these zero energy levels is open for VZ > V cZ . Since a wire
in a topological phase naturally forms a boundary with a
trivial state (the vacuum), edge states has to emerge at
the ends of the wire at this (zero) energy (see Fig.(3b))[8].
These two states left γL and right γR are just the MZM.

Nevertheless, this is not completely true for a short
nanowire (when L ∼ λF ). Fig.(4a) shows the energies
versus the Zeeman splitting for a L = 1µm nanowire.
There are no modes staying at zero energy, but there
are two (red) energy levels oscillating instead. In each
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crossing (called parity crossing), the total charge of the
wire increases abruptly by an amount QM (total charge
is plotted in Fig.(4b)). The lowest-energy eigenstates in
a parity crossing are shown in Fig.(4c). Eigenstates ex-
hibit oscillations with periodicity λF /2 from each end
of the nanowire due to VZ , µ and α. They are not
fully localized at the edges of the wire, but they decay
exponentially into the nanowire center with a decaying
length[13] given by hvF /∆ = h

√
2VZ/∆

√
m. Both eigen-

states are orthogonal since λF /2 is an integer multiple
of the length. Outside a parity crossing (Fig.(4d)) this
is not true: because λF /2 is not an integer multiple of
the length, they are not orthogonal. MZM are no longer
eigenstates but they hybridize into two Nambu eigen-
states with different parity Ψ1 = ΨM = (γL + iγR) /2

and Ψ−1 = Ψ†M = (γL − iγR) /2 whose energies oscil-
lates around zero depending on their degree of overlap.
In each parity crossing, the equilibrium-occupation of the
ΨM quasiparticle changes abruptly (as well as its par-
ity), and the total charge of the wire increases in a non-
quantized way:

QM = |Q1 −Q−1| =

=
e

4

∫ L

0

dx
[
|u∗L (x) + iu∗R (x)|2 − |u∗L (x)− iu∗R (x)|2

]
=

= e

∫ L

0

dx |uL (x)uR (x)| . (5)

Thus, the charge of this Majorana state ΨM is non-zero
despite it is a superposition of two neutral MZM owing
to the spatial overlap between both.

B. Experimental status

It has been theoretically shown that Majoranas ap-
pear in 1D systems at zero energy on each side of the
wire, at magnetic fields larger than V cZ . It has been also
shown how energy levels behave when the magnetic field
is changed. Both elements can be used to detect MZM
experimentally. However, measuring something at zero
energy is often difficult. For this reason, most of the ex-
perimental researches use the same technique: tunneling
spectroscopy. This tool measures the differential con-
ductance dG = dI/dV between the ends of the wire by
measuring the current I at a certain applied voltage V .
This conductance is roughly proportional to the density
of states of the system, which directly measures the num-
ber of accessible states at energy V . Hence, experiments
should show a zero-bias peak (ZBP) on each side of the
wire for the differential conductance[28].

During the last five years, experiments using this
method have been performed [6–10]. Experimental re-
sults of Ref.[7] are shown in Fig.(5a). The nanowire
(green) is made of InAs, a semiconductor which is known
to have strong spin-orbit interaction and a large g factor.
It is growth over a SiO2 substrate. A thin SC layer of Alu-
minum (blue) only cover the third part of the nanowire,

avoiding complete screening of the underlying gates (yel-
low), which are used to change the applied voltage VG
(chemical potential). Two Ti/Au normal leads (yellow)
attached on each side of the nanowire are used for mea-
suring the differential conductance.

Fig.(5b) shows the differential conductance versus volt-
age at 50mK taken at different magnetic fields. There is
a ∼ 0.2meV SC pairing, as it can be seen at zero mag-
netic field through the gap. At a certain magnetic field
(∼ 200mT), one peak emerges at zero energy, which oscil-
lates around this energy for larger magnetic fields. This
ZBP is arguably the MZM, but there are many other
low-energy phenomena that could lead to a ZBP. For
this reason, the researchers have considered various op-
tions which could explain this ZBP, as the Kondo effect
or Andreev Bound States (ABS). However, ZBP due to
the Kondo effect or ABS should split and move to finite
energy when the magnetic field is changed. Hence, they
conclude that this ZBP is the MZM.

However the behavior of the energy levels seems not to
be totally in agreement with the theory: the first ZBP at
200mT pins at zero energy for almost 100mT, instead of
being just a crossing point. Another experiments exhibit
also this behavior. This is the case of Ref.[8] which their
experimental set-up is shown in Fig.(5c): a nanowire
made of InSb, also known for its strong spin-orbit in-
teraction and a large g factor, is coverage by a SC shell
of NbTiN (yellow), which has a large SC critical mag-
netic field. One Ag normal lead (magenta) together with
a barrier gate (orange) is used for measuring the differ-
ential conductance.

Fig.(5d) shows the corresponding differential conduc-
tance versus voltage at 50mK taken at different magnetic
fields. The induced gap is close to 0.4meV, as it can be
seen at zero magnetic field. At a certain Zeeman split-
ting (∼ 0.4meV), one peak emerges at zero energy. But,
in this experiment, this peak seems to be pinned at zero
energy for, at least, 300mT: at 0.75T the ZBP seems to
be wider and blurrier. This could be one energy oscilla-
tion, but of course, it is smaller than those predicted by
the theory. It also shows pinned regions that theory is
not able to explain.

The aim of our work is to explain the above mentioned
discrepancy between theory and experiments following
the ideas of Ref.[16]. We have seen that each parity-
crossing introduces a charge QM into the system. Then,
if the dielectric environment is repulsive (εenvironment <
εwire), bound charges of the same sign arise in the en-
vironment (SC shell, leads, substrate and/or air or vac-
uum). It creates a repulsive “self”-interaction between
these bound charges and the real one, whose entrance
into the nanowire is then suppressed, leading to MZM
pinned regions.
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Figure 5. (a-b) Experiment reported in Ref.[7]: (a) Experimental set up: an hexagonal InAs nanowire (green) growth over a
SiO2 substrate (black), with a SC Al shell (blue), and Ti/Au gates (yellow). The differential conductance can be measured
through the current I at a certain source-drain voltage VSD. The VG voltage fixes the chemical potential; (b) Experimental
result: Conductance G = I/VSD versus magnetic field and VSD gate. (c-d) Experiment reported in Ref.[8]: (c) Experimental
set up: an hexagonal InSb nanowire growth over a SiO2 substrate (gray), with a SC NbTiN (yellow), and one Ag normal lead
(magenta), which together with a barrier gate (orange) is used for measuring the differential conductance; (d) Experimental
result: differential conductance versus magnetic field (upper axis) or Zeeman splitting (bottom axis) and voltage bias.

II. RESULTS

We treat interactions between the electrostatic envi-
ronment at a self-consistent Poisson mean field level.
The interacting hamiltonian is given by Ĥ = Ĥ0 +
eφb (x)σ0τz, where e is the electron charge, and φb (x)
is the self-consistent electrostatic potential created by
bound charges,

φb (x) =

∫
dx′Vb (x, x′) 〈ρ̂ (x′)〉 . (6)

Here, 〈ρ̂ (x′)〉 is the quantum and thermal average of the
nanowire charge density, and Vb (x, x′) encodes the geom-
etry information of the electrostatic interaction between
a charge placed at x, and the bound charges created at
the dielectric medium at x′ (so Vb is the kernel of the in-
teraction). Following the experimental set-up of Ref.[7],
the electrostatic medium has been described as shown
in Fig.(1): the nanowire is described by a rectangular
wire with dielectric permittivity ε, length L and width
R. We model the charge density ρ (~r) of the nanowire as
a charge density line at its center. The nanowire has six
interfaces (one at each facet): at bottom a SiO2 dielec-
tric substrate with dielectric permittivity εd = 3.9; on the
upper facet and on one side there is vacuum or some gas
(like Helium) with dielectric permittivity ε ' 1; on the
other side is placed the SC shell; and at both edges of the
wire a normal metal emulates the leads. The “dielectric”
permittivity for the normal leads can be taken as pos-
itive and infinite εM → ∞, because we are assuming a
quasi-static interaction and normal leads have metal bulk
properties. However, this is not true for the SC shell: be-
cause it is an ultra-thin film of ∼ 6nm of thickness, the
“dielectric” permittivity is finite [21]. It has been shown
that it could be of the order of εSC ' 100, which is still a
large number. Taking into account this electrostatic en-
vironment, Vb is obtained in Appendix B using the image
charge method. Then the potential φb (x) can be solved
self-consistently using numerical methods (see Appendix
A for more details).

We want to study the interaction between the nanowire
and the electrostatic environment. We first consider that
the nanowire is isolated from the leads (due to the tun-
nel barriers), so that we first ignore the interaction with
the left-right leads HA in Sec.II A as a first approxima-
tion to the problem. Then, the full-model HB (including
the interaction with the leads) is going to be studied in
Sec.II B.

A. First approach to the electrostatic environment
interaction

The wire energy levels versus Zeeman splitting excluding
the interaction with the leads for µ = 0.5meV are shown
in Fig.(6b). It can be compared with the non-interacting
one in Fig.(6a). Pinned regions (red) of ∼ 0.5meV width
can be seen at {1, 1.5, 2.5, 3.5}meV. It is known that
each parity crossing injects a charge QM of the same
sign into the system. This charge has to create bound
charges into the dielectric medium, making, as a result,
a rapid increase of the repulsive electrostatic potential
felt by the electrons. The potential is shown in Fig.(6c),
where red lines correspond to the pinned regions. The
potential is mainly repulsive since it is positive for the
most part of the nanowire. The spacing between the red
lines is larger than between the gray ones despite the
jump in the magnetic field is the same. Hence, the elec-
trostatic potential is increasing faster in the (red) pinned
regions. Fig.(6d) shows the total charge for this inter-
acting system (in solid lines), which can be compared
with the non-interacting one (dashed lines). While the
non-interacting one exhibits charge jumps (as it has been
discussed in Sec.IA), the charge in the interacting system
turns into extended (red) regions where the charge come
into the nanowire progressively, as the magnetic field in-
creases. This means that bound charges are conspiring
to suppress the charging, pinning the energy of the MZM
at zero energy, and freezing their wavefunctions. Devia-
tions from exactly zero energy pinning may arise for finite
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Figure 6. Energy levels versus the Zeeman splitting for the
non-interactingH0 (a) and interactingHA (without the leads)
(b) nanowire. (c) Self-consistent solution of the electrostatic
potential as a function of the wire position x. (d) Total
charge of the nanowire versus the Zeeman splitting for the
non-interacting H0 (dashed curve) and interacting HA (solid
curve) nanowire. In all previous panels Ry = Rz = 50nm,
L = 1µm and µ = 0.5meV. Red lines mark pinned regions.

temperature such as T = 10mK taken in our simulations.
Although we have taken µ = 0.5meV for our simula-

tions, pinning is general for all chemical potentials, as it
can be seen in Fig.(7b). There the pinned regions across
the VZ − µ space are shown (in red). They can be com-
pared with the parity-crossings for the non-interacting
system in Fig.(7a). We note that parity crossings evolve
to finite width pinning regions through all the topolog-
ical VZ − µ space. Pinning regions are bigger for lower
chemical potentials and for higher magnetic fields, since
the repulsive interaction is larger too. It can be seen
that the beginning of the topological phase is different
between the interacting system and the non-interacting
one (black dot lines). This is because the electrostatic
potential is renormalizing the chemical potential[17], so
it has to be also included in the critical magnetic field:

V cZ (x, VZ) =

√
(µ− φb (x))

2
+ ∆2. (7)

We note that this equation can not be solved analyti-
cally because VZ depends on φb (x). The behavior of the
parity crossings versus VZ − µ is also different between
both systems (interacting and non-interacting) due to the
renormalization of the chemical potential as well.

However, pinning is not general for all kind of envi-
ronments. Fig.(7c) shows also the incompressible regions
but across the VZ − εSC space (µ − εSC space exhibit
a similar behavior). Different values for εSC means dif-
ferent widths for the SC shell, or different SC mediums.
Around εSC ∼ 250, pinning width turns into points (the

0 1 2 3 4 5 6

V
Z
 (meV)

-1.5

-1

-0.5

0

0.5

1

1.5

µ
 (

m
e
V

)

(a)

0 1 2 3 4 5

V
Z
 (meV)

-1.5

-1

-0.5

0

0.5

1

1.5

µ
 (

m
e
V

)

(b)

0 1 2 3 4 5 6

V
Z
 (meV)

1

50

100

150

200

250

300

ǫ
S

C

(c)

0 1 2 3 4 5 6

V
Z
 (meV)

0.5
1  

2  

3  

4  

5  

6  

r y
z
 (

a
s
p
e
c
t 
ra

ti
o
)

(d)

Figure 7. Nanowire phase diagram versus µ and VZ with zero
energy solutions marked in red (for L = 1µm and Ry = Rz =
50nm) for the non-interacting H0 (a) and interacting H (b)
cases. Parity crossing lines in (a) evolve to extended regions
in (b). Pinned regions (red) with µ = 0 versus VZ and (c)
versus the dielectric permittivity of the SC shell εSC , and (d)
versus the aspect ratio ryz = Ry/Rz of the nanowire, where
Rz = 50nm is fixed. Dashed black lines indicate the beginning
of the non-interacting topological transition.

parity crossings) because the electrostatic environment
turns into an attractive one. This means bound charges
of the opposite sign arise in the dielectric medium at these
large permittivities, so charging the nanowire is now more
favored (instead of being suppressed). The width of the
nanowire also plays a role in the pinning. Fig.(7d) shows
the incompressible regions along the VZ − ryz space,
where ryz is the aspect ratio of the nanowire section.
When the distance between the SC shell and the oppo-
site side is large (large ryz), the pinning is bigger. This
is because the SC shell is farther from the center of the
nanowire, so the attractive interaction is weaker.

B. Full model for the electrostatic environment
interaction

The results including now the interaction with the leads
HB for µ = 0.5meV are shown in Fig.(8a). While (red)
pinned regions for the MZM energy levels are still present
(although they are smaller), another feature emerges:
four (blue) energy levels detach from the quasi-continuum
above the mid-gap, approach zero energy at 2meV and
anti-cross with the MZM. An extra zero-energy crossing
is induced by these energy levels at 2meV. The total
charge of the full model system (shown in Fig.(8b)) also
exhibits another unexpected behavior: while the increas-
ing jumps sawn in the previous section (Fig.(6d)) are
still present at each parity-crossings, it can be seen that
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Figure 8. (a-c) Nanowire in the regime described by the full-
model interacting Hamiltonian HB between the nanowire and
the electrostatic environment with L = 1µm, Ry = Rz =
50nm and µ = 0.5meV. Energy spectrum (a) and total charge
(b) versus Zeeman splitting. Electrostatic potential (c) versus
nanowire position x. Color grading indicates the magnitude
of the magnetic field, from VZ = 0meV in brown to VZ =
4meV in green. (d1) Sketch of the QD-nanowire model and
(d2) sketch of the fixed electrostatic potential model. Energy
spectrum (e) and total charge (f) versus Zeeman splitting for
the fixed electrostatic potential model with ∆V = −3meV
and LV = 140nm. Blue energy levels are levels approaching
to zero energy after the topological transition (QDEL).

charge is expelled at this point (2meV). The electrostatic
potential (see Fig.(8c)) is now repulsive at the middle of
the nanowire but it is attractive at the edges, with a
energy difference of 5meV (ten times bigger than other
energy scales, such as µ and ∆).

Because φb (x) depends strongly on position x, then the
topological transition does too, as Eq.(7) shows. This im-
plies that the nanowire is entering the topological phase
by regions: first the center of the nanowire enters the
topological phase at VZ ' 0.75meV, and then, the rest
of the nanowire does progressively as the magnetic field
increases. Because the (blue) unexpected energy levels
do not follow the typical energy levels behavior for a
topological nanowire seen in Sect.I A, they have to come
from this outer nanowire region outside the topological
phase. In such situation, Majoranas are just located

at the edges of the nanowire region that is inside the
topological phase. When the nanowire region inside the
topological phase is increased (as a result of a magnetic
field increasing), Fig.(8b) shows that charge is being ex-
pelled from this outer region. One might think that the
electron-electron interaction among the nanowire elec-
trons (that we have neglected so far) could destroy the
attractive interaction of this outer regions, making φb (x)
flatter. We have performed numerical simulations (not
shown here) that prove that this interaction is not strong
enough to destroy this feature.

The energy spectrum behavior of Fig.(8a) has been
found in some experimental works[7, 22], and has also
emerged in the study of hetero-structures devices of Ma-
jorana nanowires coupled to quantum-dots (QD)[23, 24]
(see Fig.(8d) for a sketch of the system). In these works,
the authors conjecture that these energy levels approach-
ing to zero energy are the QD energy levels hybridizing
with the Majorana nanowire ones. For this reason, we
say that these unexpected energy levels behavior follow
a QD energy level like behavior (QDEL).

In order to understand the behavior of the QDELs
which emerge in our system, we have developed a sim-
plified model: because QDEL comes from the topological
phase differences in the nanowire (due to the non-uniform
electrostatic potential profile), a system with a fixed non-
homogenous electrostatic (or chemical) potential should
reproduce the results. This non-homogeneity has been
taken as much similar as the electrostatic potential ex-
hibits in Fig.(8c), trying to take it as much simple as
possible too. Thus, we have studied the effect of a fixed
electrostatic potential Vf with the shape of two finite
wells at the edges of the nanowire (see Fig.(8d)):

Vf = ∆V [1−Θ (x− LV ) + Θ (x− L+ LV )] , (8)

where ∆V is the depth of the potential well, LV its width,
and Θ (x) the Heaviside function. These potential wells
could be understood as QDs too. Fig.(8e) shows the en-
ergies of this system versus the Zeeman splitting. QDEL
can be seen in blue lines approaching zero energy at al-
most 2.5meV. At this point, QDEL seems to pin the
MZM to zero energy, breaking the energy oscillations.
This is a general feature observed at these points where
the QDEL goes close to zero energy. It has been shown
in Sect.I A that the energy splitting of the MZM is given
by the degree of overlap between the two Majoranas.
Now these two quasi-particles are hybridized with the
QD modes too, so the energy is given by the degree of
overlap between these six states (one electron an one hole
energy level for each QD, and the two MZM), and their
charge is given by the degree of overlap between them
too. Total charge of the nanowire is shown in Fig.(8f).
When the QDEL goes near to zero energy, the charge
is expelled, as the full-interacting model also exhibits in
Fig.(8b).

At this point, some questions arise which should be
answered in future works in order to have a deeper un-
derstanding of the problem: how do MZM wavefunctions
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Figure 9. Total charge of the fixed electrostatic potential
model (with µ = 0meV and L = 1µm) versus the Zeeman
splitting and: (a) versus the width (with ∆V = −3meV),
or (b) versus the depth of the potential wells (with LV =
140nm). Black dashed lines correspond to the topological
transition of the nanowire center, red dashed lines correspond
to the topological transition of the potential wells, and blue
points mark the minimum of the QDBs (where charge is ex-
pelled).

behave at these points where QDEL approach zero en-
ergy? Why is charge expelled? If both sates are hy-
bridized, is the topological protection of MZM broken?

We are going to focus now just in the behavior of the
QDEL (rather than in its effect over the MZM). The
minimum of the QDEL (blue) and the total charge for
the VZ − µ space is shown versus the width and the
depth of the electrostatic potential wells in Fig.(9a) and
Fig.(9b). Both could be tuned experimentally using a
potential gate or different lead geometries. The stronger
interaction, the deeper and wider are the potential wells.
The topological transition for the nanowire center (fixed
µ = 0meV) happens at the black dashed lines, and the
red ones mark the transition for the nanowire region
inside the potential wells, whose chemical potential is
given by ∆V . Outside the region limited by the dashed
lines there is no QDELs approaching to zero energy (blue
points). This is because the topology is equal for the en-
tire nanowire: before the black line the full nanowire is in
the topological trivial phase, and after the red one in the
non-trivial phase. Hence, no charge can be expelled. Be-
tween these two transitions some QDELs emerge due to
the non-homogenous topological phase of the nanowire.
At these points, charge is expelled from these regions
inside the potential wells. Their position in this space
change because a change in the chemical potential ∆V
or a change in the potential well length LV , changes the
QD energy levels.

III. CONCLUSIONS

It has been shown that Majoranas (in solid state
physics context) can emerge as zero-energy modes
(MZM) on 1D systems, such as Rashba nanowires with

induced superconductivity in the presence of an external
magnetic field. These MZM are edge states appearing
at the interface between the trivial topological phase of
the vacuum and the non-trivial topological phase of the
nanowire. Experiments showing zero energy anomalies
compatible with MZM are more robust than theory pre-
dicts. This is manifested through zero energy pinning
regions for magnetic field and/or chemical potential per-
turbations. It is also known that a finite energy splitting
and charge of the MZM are due to the overlapping be-
tween both wave functions.

Motivated by this theory-experiment disagreement, we
have studied the electrostatic environment effect on the
Majorana nanowire. We have shown that bound charges
in a repulsive dielectric medium prevent electrons from
entering into the nanowire because of the interaction be-
tween the MZMs and their image charges in the envi-
ronment. Hence, the overlapping between both MZMs
is prevented for some magnetic range, pinning MZM at
zero energy for this range. It has been also shown that
quantum-dots (QD) are naturally built in at the edges of
the nanowire, as a result of a non-homogenous electro-
static potential. This electrostatic potential is attractive
at the nanowire edges due to the proximity of metal leads,
while it is repulsive in the middle of the nanowire due to
the remaining environment. This causes the nanowire to
transition into the topological phase at the middle region
first, and then, gradually at the edges. When the topol-
ogy is trivial at the nanowire ends, the corresponding
energy levels hybridize with the non-trivial topological
energy states of the nanowire middle. It creates QD en-
ergy levels like (QDEL) which can interfere the MZM
energy oscillations, as well as to expel charge outside the
nanowire. However, the mechanism whereby it happens
is not totally clear. We note that a deeper study of the
eigenstates of a coupled QD-Majorana system is still re-
quired, in order to understand this phenomena.

Pinning and QDEL can be useful for quantum compu-
tation, since MZM can be used as qubits[14, 15]. Both
features can be experimentally exploited using different
nanowire geometries or materials. We have shown that
pinning is a generic feature which can be increased if
the electrostatic environment is repulsive. Hence, mak-
ing thinner or smaller SC shells, screening electrostatic
lead interaction, or choosing a nanowire with a larger
dielectric permittivity, should produce larger pinned re-
gions, and therefore, MZM should be more robust against
magnetic and chemical potential perturbations. We also
note that the permittivities used in our simulations are
rough estimates, their actual values for the thin films
and nanowires in actual experiments are unknown. QDs
have been recently shown[23] to be a powerful spectro-
scopic tool in order to quantify the degree of Majorana
non-locality. We have shown QDEL can be tuned using
different geometries for the leads, which could change the
strength and the range of the electrostatic lead interac-
tion.
Acknowledgments.– I want to strongly thank Alfredo
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Appendix A: Numerical Methods

In order to transform Hamiltonian H0 to real space,
momentum operator has been transformed into real space
using the identity kx → −i~∂/∂x. The nanowire has
been taken as a 1D discretized lattice, which allows
spatial partial derivates to be rewriting as ∂/∂x →(
c†j+1cj − c

†
j−1cj

)
/a, where c†j , cj are the creation and

annihilation operators in the lattice position j, and a is
the lattice spacing, always equal to 10nm in our simula-
tions. Then, the real space hamiltonian is given by:

Ĥ0 =
1

2

∑
j

(
ψ†j ĥ1ψj + ψ†j+1ĥ2ψj + ψ†j−1ĥ

†
2ψj

)
, (A1)

where ψ†j =
(
c†j↑, c

†
j↓, cj↑, cj↓

)
is the on-site Nambu

bi-spinor, ĥ1 ≡ [(2t− µ)σ0 + VZσx] τz + ∆σyτy and
ĥ2 ≡ − (tσ0 + iαRσy) τz are spin-Nambu space Hamil-
tonians, t ≡ ~2/2ma2 is the hopping parameter, and
the Rashba constant in real space is αR ≡ α~/2a.
Rashba constant for semiconductor materials (like InAs)
is though[6–8] to be between 20 − 50meV · nm, and it
has been performed[12] induced SC gaps between ∆ =
0.5 − 0.2meV. For our simulations, it has been taken
an effective mass of m = 0.015me, a Rashba constant
of α = 20meV · nm, and a SC gap of ∆ = 0.5meV.
Most of the grown nanowires are L = 1µm, with an
hexagonal section of R = 50nm width. We have as-
sumed a rectangular section in our simulations for sim-
plicity. Eigenvalues εn and their corresponding eigen-
states Ψn =

(
u(n), v(n)

)
for the hamiltonian of Eq.(A1)

have been obtained using Matlab. Here u(n) and v(n) is
the electron and hole component along the full nanowire
of the Ψn Bogoliubov eigenstate. Thus, the total charge
of the nanowire is given by:

QT =
∑
n

Q(n) =
∑
n

〈ρ̂n〉 =
∑
n

e
〈
Ψ†nΨn

〉
=

=
∑
n

e

∫
f (εn)

∣∣∣u(n)
∣∣∣2 + f (−εn)

∣∣∣v(n)
∣∣∣2 , (A2)

where 〈. . . 〉 means quantum and thermal average, ρn is
the charge density of the n-th eigenstate, and f (E) =
1/
(
1 + e−E/kBT

)
is the Fermi-Dirac distribution func-

tion, where kB is the Boltzmann constant, and T the
temperature taken as 10mK in our simulations.

Hamiltonians seen in the main textHA andHB can not
be diagonalized analytically because they depend on their
own eigenstates. For this reason, we found its eigenstates
using a self-consistent numeric method (with an adaptive
update coefficient), taking the probability density of the
H0 hamiltonian for the first self-consistent iteration as

a test solutions, and then, taking the output probabil-
ity densities for the next iterations. We considered that
it converges when, at least, there was no change in the
fourth decimal number for all the eigenvalues (energies).
All constants and the potential in the nanowire middle
φ (VZ = 0, x = L/2) have been neglected, because they
just renormalize the chemical potential.

Appendix B: Electron-environment interaction

The electrostatic interaction between the nanowire and
the dielectric medium is given by the bound charges cre-
ated at the surrounding medium shown in Fig.(1). In
order to give more insight on the solution of this prob-
lem, we are going to solve first some simpler problems.
We are going to solve them using the electrostatic image
charge method[25].
One infinite facet.– The solution to this problem

can be found in any universitary student’s book of
electromagnetism[25]: when just one charge q is placed in
the nanowire at a distance R from the interface between
the nanowire and a dielectric material with dielectric per-
mittivity εd, then the classical electrostatic potential due
to the bound charges takes the form:

φb (x) =
1

4πεε0

κdq√
(2R)

2
+ x2

, (B1)

where:

κα ≡
ε− εα
ε+ εα

. (B2)

This bound charge is equivalent to a charge κdq place
at the same distance R from the interface, but inside
the dielectric. Because of that, it can be understood as
an image charge seen by the original charge through the
interface. Because φb is linear with q, this result may be
generalized to an arbitrary 1D density charge ρ (x):

φb (x) =
1

4πεε0

∫
κdρ (x′)√

(2R)
2

+ (x− x′)2
dx′. (B3)

Because these bound charges are distinguishable from the
nanowire charges (cannot tunnel between each other),
this potential can be directly transformed into a quantum
operator as a Hartree interaction without any Fock cor-
rection. Assuming a purely local polarizability (Thomas-
Fermi limit), it may be transformed ρ (x′) → 〈ρ (x′)〉,
which is perfectly equivalent to the above classical equa-
tion. Then, integrating out the bound charges degrees of
freedom, the potential is given by:

φb (x) =

∫
〈ρ (x′)〉Vb (x, x′) dx′, (B4)

where Vb (x, x′) ≡ κd/4πεε0

√
(2R)

2
+ (x− x′)2 encodes

the geometry information of the interaction.
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Two opposite infinite facets.– We consider the interface
between the nanowire with two opposite infinity facets
with different dielectric permittivities εd and εa. Follow-
ing the previous subsection, the potential Vb for just one
real charge is going to be obtained, and then the results
may be generalized to an arbitrary density ρ (x) and to
its corresponding quantum expression. In order to sat-
isfy the boundary condition between the original charge
q and each interface, two image charges κdq and κaq have
to appear in each dielectric medium at the same distance
R from the interface. However, each image charge does
not satisfy the boundary condition with the opposite in-
terface. For this reason, two (accidentally equals) addi-
tional image charges κdκaq are needed at a distance 3R
from each interface (distance between image charge and
opposite interface). But these additional image charges
neither satisfy the boundary conditions with the opposite
interfaces. . . One can realize that for each image charge
qα,n (in q charge units) created at the n step of the im-
age method procedure in the α dielectric, another image
charge,

qβ,n+1 = κβqα,n, (B5)

with q0 ≡ 1; is created in the opposite β dielectric at a
distance 2nR from the original charge q in order to satisfy
the boundary conditions.
One rectangular corner.– This problem can be also

found in some universitary student’s books[26]: a charge
q is put at a distance R1 from dielectric εd and at a differ-
ent distance R2 form dielectric εa, which is perpendicular
to the other one. Two image charges κdq and κaq have
to appear in each dielectric at (x, 2R1, 0) and (x, 0, 2R2)
from the interface. Because of that, another two im-
age charges appear at the same place (x, 2R1, 2R2). But
these two charges are exactly the same: both are κaκdq.

Then, this charge satisfies both boundary conditions at
the same time, and therefore there are just three image
charges in this system.
Four rectangular corners: interaction without the

leads.– A charge is placed at the same distance R from
four flat dielectric mediums with dielectric permittivities
εa, εb, εc and εd. It has been shown that for each image
charge, another appear in the opposite interface; while
for each two image charges place in two perpendicular
interfaces, just one more appears in the corner. Due to
this rectangular geometry, image charges appear just at
certain points, what gives a potential:

Vb (x) =
1

4πεε0

 ∞∑
n,m=1

 (qd,n + qa,n) (qb,m + qc,m)√
x2 + (2nR)

2
+ (2mR)

2

+

+

∞∑
n=1

qd,n + qa,n + qb,n + qc,n√
x2 + (2nR)

2

 , (B6)

where:
qa,n+1 = κaqd,n qd,n+1 = κdqa,n

qc,m+1 = κcqb,m qb,m+1 = κbqc,m
qα,0 = 1← ∀α = {a, b, c, d} .

(B7)

Because just one charge is needed in the corners in order
to satisfy two boundary conditions, number of charges
increase in each n image method step as V (n)

b ∼ 4n
(square’s perimeter), while potential decreases (for large
n) as V (n)

b ∼ κn/n. Then, potential converges.
General solution: full model interaction.– Finally, the

full system of Fig.(1) is solved. Following the same pro-
cedure, the most general bound charges potential is given
by:

Vb (x) =
1

4πεε0

 ∞∑
n,m,k=0

 qk,M1
(qd,n + qa,n − δn,0) (qb,m + qc,m − δm,0)√(

2L− 2floor( 2k+5
4 )L+ (−1)

k
x
)2

+ (2nR)
2

+ (2mR)
2

+

+
(qk,M2

− δk,0) (qd,n + qa,n − δn,0) (qb,m + qc,m − δm,0)√(
2floor( 2k+3

4 )L+ (−1)
k
x
)2

+ (2nR)
2

+ (2mR)
2

 δn+m+k,0

 , (B8)

where:{
qM1,n+1 = κM1qM2,n qM2,n+1 = κM2qM1,n

qα,0 = 1← ∀α = {M1,M2} .
(B9)

If L is enough large compare to R (our case), just lowest
order of the new image charges qMi

terms will contribute

to the potential, so the number of charges increase as
V

(n)
b ∼ 12n, and then, it still converges. If this is not

true (L ∼ 2R), then the number of charges increase as
V

(n)
b ∼ 6n2 (cubic’s area). Since the potential decreases

(for large n) as V (n)
b ∼ κn/n, convergence is not always

ensured.
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